Yang Luo 1†Hongyi Huang 1†Lei Wan 1,2,5,*Weiping Liu 1Zhaohui Li 3,4,6,*
Author Affiliations
1 Department of Electronic Engineering, College of Information Science and Technology, Jinan Universityhttps://ror.org/02xe5ns62, Guangzhou 510632, China
2 International Institute for Innovative Design and Intelligent Manufacturing, Tianjin University, Shaoxing 312000, China
3 Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510275, China
4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
5 e-mail: wanlei@jnu.edu.cn
6 e-mail: lzhh88@sysu.edu.cn
Integrated optomechanical crystal (OMC) cavities provide a vital device prototype for highly efficient microwave to optical conversion in quantum information processing. In this work, we propose a novel heterogeneous OMC cavity consisting of a thin-film lithium niobate (TFLN) slab and chalcogenide (ChG) photonic crystal nanobeam coupled by a wavelength-scale mechanical waveguide. The optomechanical coupling rate of the heterogeneous OMC cavity is optimized up to 340 kHz at 1.1197 GHz. Combined with phononic band and power decomposition, 17.38% energy from the loaded RF power is converted into dominant fundamental horizontal shear mode (SH0) in the narrow LN mechanical waveguide. Based on this fraction, as a result, 3.51% power relative to the loaded RF energy is scattered into the fundamental longitudinal mode (L0) facing the TFLN-ChG heterogeneous waveguide. The acoustic breathing mode of the heterogeneous OMC is successfully excited under the driving of the propagating L0 mode in the heterogeneous waveguide, demonstrating the great potentials of the heterogeneous piezo-optomechanical transducer in high-performance photon–phonon interaction fields.
Photonics Research
2023, 11(9): 1509

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。