Jingxuan Chen 1,2†Mingjin Wang 1,3†Ting Fu 1,2Yufei Wang 1,4,6,*[ ... ]Wanhua Zheng 1,2,3,4,5,7,*
Author Affiliations
Abstract
1 Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Scienceshttps://ror.org/034t30j35, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4 College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
5 Weifang Academy of Advanced Opto-Electronic Circuits, Weifang 261021, China
6 e-mail: yufeiwang@semi.ac.cn
7 e-mail: whzheng@semi.ac.cn
Zero-energy topological states, which are protected by chiral symmetry against certain perturbations topologically, localize at interfaces between trivial and non-trivial phases in the Su–Schrieffer–Heeger (SSH) chain model. Here, we propose and demonstrate a method to manipulate chiral symmetry itself to improve the localized interfaces and enlarge the mode volume of topological states in the SSH model, thus optimizing the lasing performance of localized interfaces. As multiple defects corresponding to off-diagonal perturbations in an eigenmatrix are introduced, the topological state expands and extends to extra defects at the topological interface without breaking chiral symmetry. We apply the proposed method in electrical pumping semiconductor laser arrays to verify our theoretical prediction and optimize the output characteristics of the devices. The measured results of the proposed multi-defect SSH laser array show that the output power has been increased by 27%, and the series resistance and far-field divergence have been reduced by half compared to the traditional SSH laser array, establishing a high-performance light source for integrated silicon photonics, infrared light detection and ranging, and so on. Our work demonstrates that the proposed method is capable of improving topological localized interfaces and redistributing zero-energy topological states. Furthermore, our method can be applied to other platforms and inspire optimizations of more devices in broader areas.
Photonics Research
2023, 11(9): 1517
作者单位
摘要
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
FAPbI3 Perovskite quantum dot Antisolvent Surface passivation Solar cell 
Frontiers of Optoelectronics
2022, 15(3): s12200
Yufei Jia 1,2Yufei Wang 1,3Xuyan Zhou 1Linhai Xu 1,2[ ... ]Wanhua Zheng 1,2,3,4,*
Author Affiliations
Abstract
1 Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
4 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
We design a 645 nm laser diode (LD) with a narrow vertical beam divergence angle based on the mode expansion layer. The vertical beam divergence of 10.94° at full width at half-maximum is realized under 1.5 A continuous-wave operation, which is the smallest vertical beam divergence for such an LD based on the mode expansion layer, to the best of our knowledge. The threshold current and output power are 1.07 A and 0.94 W, limited by the thermal rollover for the 100 µm wide and 1500 µm long broad area laser, and the slope efficiency is 0.71 W/A. The low coherence device is fabricated with the speckle contrast of 3.6% and good directional emission. Such 645 nm LDs have promising applications in laser display.
beam divergence laser diode speckle laser display 
Chinese Optics Letters
2021, 19(10): 101401
傅廷 1,3王宇飞 1,2王学友 1,3陈静瑄 1,3[ ... ]郑婉华 1,2,3,4,*
作者单位
摘要
1 中国科学院半导体研究所固态光电信息技术重点实验室, 北京 100083
2 中国科学院大学未来技术学院, 北京 101408
3 中国科学院大学材料科学与光电工程研究中心, 北京 100049
4 中国科学院半导体研究所集成光电子学国家重点实验室, 北京 100083

激光器是一种高亮度、高效率和高相干性的功率转换器件,特别是在半导体激光器系统中,不仅存在折射率的高低分布,而且还同时存在增益和损耗分布,是一个天然的非厄米光学系统。通过引入微结构调控激光器的折射率和增益损耗分布,可以在基于半导体激光芯片的光学平台上实现宇称时间对称、超对称等物理效应,并实现对激光器的空间光场和频域光谱的调控,从而获得高性能的新型微结构激光器。其中,宇称时间对称有望改善激光器的光谱、近场和远场分布,而超对称有望实现单侧模大功率输出。本文主要从这些物理效应的基本原理出发,综述了基于宇称时间对称和超对称的激光器的相关工作,探讨了新型微结构激光器的可能发展方向。

激光器 非厄米光子学 宇称时间对称 超对称 lasers non-Hermitian photonics parity-time symmetry supersymmetry 
中国激光
2021, 48(12): 1201005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!