Author Affiliations
Abstract
1 University Paris-Saclay, CNRS, Centre for Nanoscience and Nanotechnology (C2N), Palaiseau 91120, France
2 University Grenoble Alpes, CEA, LETI, Grenoble 38000, France
3 Optoelectronics Research Centre, Zepler Institute for Photonics and Nanoelectronics, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
4 e-mail: jonathan.peltier@c2n.upsaclay.fr
5 e-mail: Weiwei.Zhang@soton.ac.uk
Silicon-based electro-optic modulators contribute to easing the integration of high-speed and low-power consumption circuits for classical optical communications and data computations. Beyond the plasma dispersion modulation, an alternative solution in silicon is to exploit the DC Kerr effect, which generates an equivalent linear electro-optical effect enabled by applying a large DC electric field. Although some theoretical and experimental studies have shown its existence in silicon, limited contributions relative to plasma dispersion have been achieved in high-speed modulation so far. This paper presents high-speed optical modulation based on the DC Kerr effect in silicon PIN waveguides. The contributions of both plasma dispersion and Kerr effects have been analyzed in different waveguide configurations, and we demonstrated that the Kerr induced modulation is dominant when a high external DC electric field is applied in PIN waveguides. High-speed optical modulation response is analyzed, and eye diagrams up to 80 Gbit/s in NRZ format are obtained under a d.c. voltage of 30 V. This work paves the way to exploit the Kerr effect to generate high-speed Pockels-like optical modulation.
Photonics Research
2024, 12(1): 51
Author Affiliations
Abstract
1 Institut d’Electronique Fondamentale (IEF), Univ. Paris-Sud, CNRS, Bat 220, F-91405 Orsay, France
2 CEA, LETI, Minatec Campus, 17 rue des Martyrs, F-38054 Grenoble, France
3 leopold.virot@cea.fr
4 laurent.vivien@u-psud.fr
5 STMicroelectronics, Silicon Technology Development, Crolles, France
This paper reports on high-performance waveguide-integrated germanium photodiodes for optical communications applications. 200 mm wafers and production tools were used to fabricate the devices. Yields over 97% were obtained for three different compact photodiodes (10 × 10 μm and intrinsic region width of 0.5, 0.7, and 1 μm) within the same batch of three wafers. Those photodiodes exhibit low dark currents under reverse bias with median values of 74, 62, and 61 nA for intrinsic widths of 0.5, 0.7, and 1 μm, respectively, over a full wafer. Responsivities up to 0.78 A∕W at 1550 nm and zero bias were measured. Zero bias operation is possible for 25 and 40 Gbps with receiver sensitivity estimated to -13.9 and -12.3 dBm, respectively.
Photodetectors Optoelectronics Integrated optics devices Photodiodes Photodetectors 
Photonics Research
2013, 1(3): 03000140

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!