肖虎 1,2潘志勇 1,2陈子伦 1,2马鹏飞 1,2[ ... ]陈金宝 1,2,*
作者单位
摘要
1 国防科学技术大学 前沿交叉学科学院,长沙 410073
2 国防科技大学 南湖之光实验室,长沙 410073
锥形光纤能够有效兼顾非线性效应抑制和模式控制,具备实现高功率、高光束质量光纤激光的潜力。近期国防科技大学研制了锥形掺镱光纤,采用1018 nm光纤激光后向级联泵浦实现了20.2 kW 激光输出,光束质量β因子平均值优于2,拉曼抑制比为33 dB。研究结果展示了锥形光纤在实现万瓦级高光束质量激光方面的优势。
光纤激光器 级联泵浦 锥形光纤 光束质量 fiber laser tandem pump tapered fiber beam quality 
强激光与粒子束
2024, 36(1): 011001
陈潇 1黄善旻 1黄良金 1,2,3,*曹家宁 1[ ... ]姜宗福 1
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
中国激光
2024, 51(5): 0516002
王泽锋 1,2,*田鑫 1,2饶斌裕 1,2王蒙 1,2[ ... ]陈金宝 1,2,**
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
中国激光
2023, 50(21): 2116002
肖虎 1,2李瑞显 1,2吴函烁 1,2黄良金 1,2[ ... ]陈金宝 1,2,***
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
级联泵浦方案具有泵浦光亮度高、量子亏损小、光纤热负荷低、模式不稳定阈值高等优势,是获得高功率光纤激光的主要技术方案。目前,万瓦级高光束质量光纤激光的实现在非线性效应抑制和模式控制等方面遇到困难。本文介绍了国防科技大学近年来在高光束质量级联泵浦光纤激光器方面的研究进展,并对功率和光束质量进一步提升的可行途径进行了分析。
高功率光纤激光器 级联泵浦 受激拉曼散射 光束质量 
光学学报
2023, 43(17): 1714009
周朴 1蒋敏 2吴函烁 1,3邓宇 1[ ... ]冷进勇 1,3
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 试验训练基地,陕西 西安 710106
3 国防科技大学 南湖之光实验室,湖南 长沙 410073
光纤激光是20世纪以来国内的研究热点。国防科技大学在光纤激光方向的研究始于“十一五”期间,至今已有约15年的历程,取得了一系列同行认可的研究成果。学校光纤激光的研究主体依托于光学工程学科。光学工程学是学校的优势学科之一,近几轮学科评估中得到了很好的成绩,为光纤激光方面的研究提供了高水平的科研平台和人才队伍等;另一方面,光纤激光的发展也受益于学校学科门类比较齐全的优势和在学科交叉方面的有益探索与实践。文中从学科交叉视角,梳理学校光纤激光学科方向与电子、材料、控制、智能、纳米等学科方向交叉取得的若干重要突破,从科研范式演进、学科主体驱动、应用需求牵引和科教融合发展等四个方面分析交叉科学研究和交叉学科建设面临的机遇。
光学工程 学科交叉 光纤激光 相干合成 脉冲激光 optical engineering interdisciplinary fiber laser coherent synthesis pulsed laser 
红外与激光工程
2023, 52(6): 20230334
许将明 1张扬 1马小雅 1叶俊 1,2,3[ ... ]周朴 1,*
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 南湖之光实验室,湖南 长沙 410073
3 国防科技大学 高能激光技术湖南省重点实验室,湖南 长沙 410073
量子亏损对高功率光纤激光器内的废热产生和光光转换效率具有重要影响,光纤激光器输出功率的提升过程可以视为不断与量子亏损作斗争的过程。文中梳理了近年来1 μm波段低量子亏损光纤激光的重要进展,重点介绍了稀土掺杂增益和拉曼增益两种体制的光纤激光器在实现低量子亏损输出方面的相关工作。在稀土掺杂光纤激光器中,采用级联泵浦、多组分掺杂、强泵浦等技术可降低激光器的量子亏损,其中量子亏损≤1%的掺镱光纤激光器已实现400 mW功率输出。在拉曼光纤激光器中,通过采用特殊掺杂、泵浦光谱调控、增益竞争抑制等技术,量子亏损≤1%的拉曼光纤激光器已实现百瓦级功率输出,并成功验证包层泵浦方案的可行性,表明其在实现高功率低量子亏损输出方面具有重要潜力。
光纤激光器 高功率 低量子亏损 掺镱光纤激光 拉曼光纤激光 fiber laser high power low quantum defect ytterbium-doped fiber laser Raman fiber laser 
红外与激光工程
2023, 52(6): 20230267
安毅 1蒋敏 1,2陈潇 1李俊 1[ ... ]周朴 1,**
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学试验训练基地,陕西 西安 710106
3 国防科技大学南湖之光实验室,湖南 长沙 410073
4 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
高功率光纤激光是当前我国激光科学技术领域的前沿热点,而稀土掺杂的有源光纤是高功率光纤激光器的核心器件。与常规有源光纤不同,多折射率层有源光纤的纤芯和包层之间增加了一个或多个辅助折射率层,展现出了特殊的模场特性,有望进一步提升高功率光纤激光的输出功率。利用传统方法分析不同结构参数下多折射率层有源光纤的模场特性时,通常需要耗费较长的时间求解麦克斯韦方程组。笔者首次引入机器学习算法来预测多折射率层有源光纤的模场特性。该方法仅需要数据空间中0.1%的样本,就可以学习多折射率层有源光纤结构参数与其模场特性之间的复杂映射关系,进而实现无须求解麦克斯韦方程组的快速精准预测。该方法的平均预测误差小于0.6%,预测速度相比传统方法提升了约7000倍,为多折射率层有源光纤的模场特性分析提供了新思路。
光纤光学 人工智能 机器学习 光纤激光 有源光纤 多折射率层光纤 模场特性 
中国激光
2023, 50(11): 1101013
任帅 1,2马鹏飞 1,*陈益沙 1李魏 1[ ... ]周朴 1
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 信息通信学院,湖北 武汉 430035
红外与激光工程
2023, 52(2): 20220900
奚小明 1,2杨保来 1,2张汉伟 1,2潘志勇 1,2[ ... ]许晓军 1,2
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,长沙 410073
2 国防科技大学 南湖之光实验室,长沙 410073
高功率光纤激光器具有高效率、小体积、低成本、抗回光能力强等突出优点,在工业加工等应用领域中具有明显的竞争优势。近期,国防科技大学基于光纤耦合半导体激光器(LD)直接泵浦的主振荡功率放大器(MOPA)实现了单纤20.27 kW的功率输出。放大器采用纯后向泵浦方案,中心波长1080 nm,光光效率达到84.8%,拉曼散射抑制比大于50 dB。通过优化光纤和器件的设计,可进一步提升激光器的功率和光束质量。
光纤激光器 光纤放大器 半导体激光器 后向泵浦 fiber laser fiber amplifier laser diode backward pumping 
强激光与粒子束
2023, 35(2): 021001
Author Affiliations
Abstract
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
In recent years, machine learning, especially various deep neural networks, as an emerging technique for data analysis and processing, has brought novel insights into the development of fiber lasers, in particular complex, dynamical, or disturbance-sensitive fiber laser systems. This paper highlights recent attractive research that adopted machine learning in the fiber laser field, including design and manipulation for on-demand laser output, prediction and control of nonlinear effects, reconstruction and evaluation of laser properties, as well as robust control for lasers and laser systems. We also comment on the challenges and potential future development.
PhotoniX
2022, 3(1): 16

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!