Author Affiliations
Abstract
1 Center for Terahertz Waves and School of Precision Instrument and Opto-electronics Engineering, Tianjin Universityhttps://ror.org/012tb2g32, Tianjin 300072, China
2 e-mail: lyliuma@tju.edu.cn
3 e-mail: tianzhen@tju.edu.cn
Colliding of two counter-propagating laser pulses is a widely used approach to create a laser field or intensity surge. We experimentally demonstrate broadband coherent terahertz (THz) radiation generation through the interaction of colliding laser pulses with gas plasma. The THz radiation has a dipole-like emission pattern perpendicular to the laser propagation direction with a detected peak electric field 1 order of magnitude higher than that by single pulse excitation. As a proof-of-concept demonstration, it provides a deep insight into the physical picture of laser–plasma interaction, exploits an important option to the promising plasma-based THz source, and may find more applications in THz nonlinear near-field imaging and spectroscopy.
Photonics Research
2023, 11(9): 1562
Author Affiliations
Abstract
1 Center for Terahertz Waves & School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
2 The Institute of Optics, University of Rochester, Rochester, USA
Ultra-broadband, intense, coherent terahertz (THz) radiation can be generated, detected, and manipulated using laser-induced gas or liquid plasma as both the THz wave transmitter and detector, with a frequency coverage spanning across and beyond the whole “THz gap.” Such a research topic is termed “plasma-based THz wave photonics in gas and liquid phases.” In this paper, we review the most important experimental and theoretical works of the topic in the non-relativistic region with pump laser intensity below 1018 W/cm2.
laser-induced ionization ponderomotive force four-wave mixing asymmetric transient current model full quantum mechanical model terahertz wave generation and detection 
Photonics Insights
2023, 2(3): R06
Author Affiliations
Abstract
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Journal of Semiconductors
2023, 44(4): 040202
姚春赫 1,2杨旭 1赵明心 1,2刘剑 1,2[ ... ]刘力源 1,2,*
作者单位
摘要
1 中国科学院半导体研究所 半导体超晶格国家重点实验室,北京 100083
2 中国科学院大学 材料与光电研究中心,北京 100049
3 中国科学院脑科学与智能技术卓越创新中心,北京 100083
提出了一种用于单光子雪崩二极管图像传感器的超高速目标定位处理器。它由一个处理阵列,一个Y特征向量生成器和一个位置计算器组成,能够进行噪声减除和目标定位处理。设计了一种省略了乘法和减法运算的高斯滤波和背景减除法,降低了计算复杂度和硬件资源消耗,并显著地提高了处理速度。整个处理器在FPGA开发板上实现,实验结果表明,该处理器能够以100 000 帧/s的速度实时处理128×128分辨率的脉冲图像,并定位其中的运动物体。本文提出的处理器架构同样可用于其他脉冲图像传感器。
目标定位 现场可编程 单光子雪崩二极管 背景减除 高斯滤波 Object location FPGA SPAD Background subtraction Gaussian filter 
光子学报
2022, 51(11): 1104001
Yi Liu 1Chunmei Ouyang 1,5,*Quan Xu 1Xiaoqiang Su 2,6,*[ ... ]Weili Zhang 4,7,*
Author Affiliations
Abstract
1 Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
2 Institute of Solid State Physics, College of Physics and Electronic Science, Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, China
3 Nonlinear Physics Centre, Australian National University, Canberra, ACT 2601, Australia
4 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
5 e-mail: cmouyang@tju.edu.cn
6 e-mail: xiaoqiang.su@sxdtdx.edu.cn
7 e-mail: weili.zhang@okstate.edu
Recent moiré configurations provide a new platform for tunable and sensitive photonic responses, as their enhanced light–matter interactions originate from the relative displacement or rotation angle in a stacking bilayer or multilayer periodic array. However, previous findings are mostly focused on atomically thin condensed matter, with limitations on the fabrication of multilayer structures and the control of rotation angles. Structured microwave moiré configurations are still difficult to realize. Here, we design a novel moiré structure, which presents unprecedented capability in the manipulation of light–matter interactions. Based on the effective medium theory and S-parameter retrieval process, the rotation matrix is introduced into the dispersion relation to analyze the underlying physical mechanism, where the permittivity tensor transforms from a diagonal matrix to a fully populated one, whereas the permeability tensor evolves from a unit matrix to a diagonal one and finally becomes fully filled, so that the electromagnetic responses change drastically as a result of stacking and rotation. Besides, the experiment and simulation results reveal hybridization of eigenmodes, drastic manipulation of surface states, and magic angle properties by controlling the mutual rotation angles between two isolated layers. Here, not only a more precisely controllable bilayer hyperbolic metasurface is introduced to moiré physics, the findings also open up a new avenue to realize flat bands at arbitrary frequencies, which shows great potential in active engineering of surface waves and designing multifunctional plasmonic devices.
Photonics Research
2022, 10(9): 2056
顾超 1,2冯鹏 1,2尹韬 1,2于双铭 1,2[ ... ]吴南健 1,2,3
作者单位
摘要
1 中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083
2 中国科学院大学 材料与光电研究中心, 北京 100049
3 中国科学院脑科学与智能技术卓越创新中心, 北京 100083
面向微光环境的高时间分辨成像需求, 基于CMOS图像传感器工艺, 设计并仿真验证了一种具有三角形状梯度掺杂且浮置扩散区域中置的超快电荷转移大尺寸光电二极管(PPD)像素器件。它通过N埋层掺杂形状和梯度掺杂设计增强光生电荷传输路径的电势梯度, 加速光生电荷从N埋层感光区域向电荷存储区域的转移。同时通过对传输管沟道的梯度掺杂, 减小了沟道反弹电荷的水平, 有效提升了光生电荷转移效率。仿真结果表明, 三角形枝状的圆形像素器件在30000个电荷的情况下, 在电荷转移效率达到99.9%时, 电荷转移时间为1ns, 同时其反弹电荷水平在1e-以下。该PPD像素器件可用于微光环境下的高时间分辨率成像。
PPD像素器件 大尺寸像素器件 超快电荷转移 高时间分辨率 PPD pixel device large-size pixel device ultra-fast charge transfer high time resolution 
半导体光电
2021, 42(2): 196
Author Affiliations
Abstract
1 Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
2 Department of Electrical Engineering, Tsinghua University,Beijing, 100084, China
3 Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
4 State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China
Journal of Semiconductors
2020, 41(11): 110101
李鸿龙 1,2,*杨杰 1,2,3张忠星 1,2罗迁 1,2[ ... ]吴南健 1,2,4
作者单位
摘要
1 中国科学院半导体研究所 超晶格国家重点实验室,北京 100083
2 中国科学院大学 材料与光电研究中心,北京 100049
3 西湖大学 工学院,浙江 杭州 310000
4 中国科学院脑科学与智能技术卓越创新中心,北京 100083
视觉芯片是一种高速、低功耗的智能视觉处理系统芯片,在生产生活中有广阔的应用前景。文中提出了一种新型的可编程视觉芯片架构,该架构的设计考虑了传统计算机视觉算法和卷积神经网络的运算特点,使其能够同时高效地支持这两类算法。该视觉芯片集成了可编程的多层次并行处理阵列、高速数据传输通路和系统控制模块,并采用65 nm标准CMOS工艺制程流片。测试结果表明:视觉芯片在200 MHz系统时钟下达到413GOPS的峰值运算性能,能够高效地完成包括完成人脸识别、目标检测等多种计算机视觉和人工智能算法。该视觉芯片在可编程度、运算性能以及能耗效率等方面都大大超越了其他视觉芯片。
视觉芯片 目标检测 卷积神经网络 可编程阵列 vision chip object detection convolutional neural networks programmable processing array 
红外与激光工程
2020, 49(5): 20190553
作者单位
摘要
华南师范大学信息光电子科技学院,广东省微纳光子功能材料与器件重点实验室,广东 广州 510006
无线光通信信道复杂多变,喷泉码作为一种新兴的无速率编码无需信道的先验信息即可实现不同信道环境下的自适应传输,与传统编码相比更能提升无线传输的质量。本文首先总结了喷泉码应用于无线光通信的优势以及国内外喷泉码的发展现状,然后深入研究了两类喷泉码编码方案的设计以及对喷泉码性能影响重大的度分布函数的设计,总结了一种喷泉码即(LT)码的译码方法以及近些年不断提出优化的方案,同时指出了喷泉码设计中亟需解决的关键难点,最后提出了喷泉码应用于无线光通信的必要技术和探索方向。
无线光通信 喷泉码 无速率编码 度分布函数 optical wireless communication fountain codes rateless coding degree distribution function 
光电工程
2020, 47(3): 190623
张欣欣 1,2,3何明霞 1,2,3,*赵晋武 1,2,3陈勰宇 1,3[ ... ]王璞 1,2,3
作者单位
摘要
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 天津大学精密测试技术及仪器国家重点实验室, 天津 300072
3 天津大学太赫兹研究中心, 天津 300072
4 西安交通大学生命科学与技术学院, 陕西 西安 710048
采用频率为0.1 THz、功率密度为2.65 mW/cm 2的太赫兹光源分别辐射SD大鼠海马神经元5,15,25 min,通过神经元膜电位的变化,研究了太赫兹辐射对海马神经元兴奋性的影响,结果发现,15 min和25 min的太赫兹辐射会显著诱发海马神经元去极化,从而提高其兴奋性。为了探究太赫兹辐射提高神经元兴奋性的原因,检测了神经元内Ca 2+、Na +和K +浓度的变化,结果表明,此辐射使海马神经元内Ca 2+、Na +浓度增加,K +浓度减小。研究证实了太赫兹辐射(0.1 THz,2.65 mW/cm 2)通过调节海马神经元内带电离子的浓度促使其兴奋,为太赫兹辐射技术在生物医学领域应用的发展奠定了前期实验基础。
生物医学 太赫兹辐射 海马神经元 荧光检测 兴奋 离子浓度 biomedicine terahertz radiation hippocampal neurons fluorescence detection excitation ion concentration 
中国激光
2020, 47(2): 0207023

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!