Qiancheng Xu 1,2Kaiyu Cui 1,2,*Ning Wu 1,2Xue Feng 1,2[ ... ]Yidong Huang 1,2,3
Author Affiliations
Abstract
1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2 Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
3 Beijing Academy of Quantum Information Sciences, Beijing, China
Tunable coupled mechanical resonators with nonequilibrium dynamic phenomena have attracted considerable attention in quantum simulations, quantum computations, and non-Hermitian systems. In this study, we propose tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities. The excited optical mode interacts with both symmetric and antisymmetric mechanical supermodes and mediates coupling at a frequency of approximately 4.96 GHz. The mechanical-mode coupling is tuned through both optical spring and gain effects, and the reduced coupled frequency difference in non-Hermitian parameter space is observed. These results benefit research on the microscopic mechanical parity–time symmetry for topology and on-chip high-sensitivity sensors.
Photonics Research
2022, 10(8): 1819
Kaiyu Cui 1,2,*†Zhilei Huang 1†Ning Wu 1,2Qiancheng Xu 1,2[ ... ]Yidong Huang 1,2,3
Author Affiliations
Abstract
1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2 Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
3 Beijing Academy of Quantum Information Science, Beijing, China
Micro- and nanomechanical resonators have emerged as promising platforms for sensing a broad range of physical properties, such as mass, force, torque, magnetic field, and acceleration. The sensing performance relies critically on the motional mass, mechanical frequency, and linewidth of the mechanical resonator. Herein, we demonstrate a hetero optomechanical crystal (OMC) cavity based on a silicon nanobeam structure. The cavity supports phonon lasing in a fundamental mechanical mode with a frequency of 5.91 GHz, an effective mass of 116 fg, and a mechanical linewidth narrowing in the range from 3.3 MHz to 5.2 kHz, while the optomechanical coupling rate is as high as 1.9 MHz. With this phonon laser, on-chip sensing can be predicted with a resolution of δλ/λ=1.0×10-8. The use of a silicon-based hetero OMC cavity that harnesses phonon lasing could pave the way toward high-precision sensors that allow silicon monolithic integration and offer unprecedented sensitivity for a broad range of physical sensing applications.
Photonics Research
2021, 9(6): 06000937
Author Affiliations
Abstract
1 Beijing National Research Center for Information Science and Technology (BNRist), Beijing Innovation Center for Future Chips, Electronic Engineering Department, Tsinghua University, Beijing 100084, China
2 Frontier Science Center for Quantum Information, Beijing 100084, China
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
An optomechanical crystal cavity with nonsuspended structure using As2S3 material is proposed. The principle of mode confinement in the nonsuspended cavity is analyzed, and two different types of optical and acoustic defect modes are calculated through appropriate design of the cavity structure. An optomechanical coupling rate of 82.3 kHz is obtained in the proposed cavity, and the designed acoustic frequency is 3.44 GHz. The acoustic mode coupling between two nonsuspended optomechanical crystal cavities is also demonstrated, showing that the proposed cavity structure has great potential for realizing further optomechanical applications in multicavity systems.
Photonics Research
2021, 9(5): 05000893

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!