Author Affiliations
1 Shenzhen Key Laboratory of Laser Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
2 Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, China
3 Han’s Laser Technology Industry Group Co., Ltd., Shenzhen, China
High-power femtosecond mid-infrared (MIR) lasers are of vast importance to both fundamental research and applications. We report a high-power femtosecond master oscillator power amplifier laser system consisting of a single-mode Er:ZBLAN fiber mode-locked oscillator and pre-amplifier followed by a large-mode-area Er:ZBLAN fiber main amplifier. The main amplifier is actively cooled and bidirectionally pumped at 976 nm, generating a slope efficiency of 26.9%. Pulses of 8.12 W, 148 fs at 2.8 μm with a repetition rate of 69.65 MHz are achieved. To the best of our knowledge, this is the highest average power ever achieved from a femtosecond MIR laser source. Such a compact ultrafast laser system is promising for a wide range of applications, such as medical surgery and material processing.
femtosecond fiber laser fluoride fiber amplifier master oscillator power amplifier mid-infrared 
High Power Laser Science and Engineering
2023, 11(4): 04000e53

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。