作者单位
摘要
1 中国科学院福建物质结构研究所,光电材料化学与物理重点实验室,福州 350002
2 中国科学院大学物理科学学院,北京 100049
采用提拉法生长了1.85%Er,23.95%Yb∶Ba3Gd(PO4)3和1.95%Er,55.73%Yb∶Ba3Gd(PO4)3两种晶体(式中Er、Yb浓度为原子数分数)。测量并分析了晶体在室温下的吸收系数谱、上转换荧光谱、发射截面谱、增益截面谱和荧光衰减曲线。1.85%Er,23.95%Yb∶Ba3Gd(PO4)3晶体在峰值荧光波长1 537 nm处的发射截面、Er3+的4I13/2多重态荧光寿命和Yb3+→Er3+的能量传递效率分别为0.54×10-20 cm2、9.9 ms和90%;1.95%Er,55.73%Yb∶Ba3Gd(PO4)3晶体在峰值荧光波长1 537 nm处的发射截面、Er3+的4I13/2多重态荧光寿命和Yb3+→Er3+的能量传递效率则分别为0.58×10-20 cm2、9.7 ms和93%。基于975 nm半导体激光端面泵浦,在1.85%Er,23.95%Yb∶Ba3Gd(PO4)3晶体中实现了97 mW最高功率和27.1%斜效率的1 567 nm连续激光输出,在1.95%Er,55.73%Yb∶Ba3Gd(PO4)3晶体中实现了93 mW最高功率和17.1%斜效率的1 567 nm连续激光输出。
人眼安全1.5 μm激光 激光晶体 Er3+,Yb3+∶Ba3Gd(PO4)3晶体 提拉法 光谱性能 连续激光性能 eye-safe 1.5 μm laser laser crystal Er3+,Yb3+∶Ba3Gd(PO4)3 crystal Czochralski method spectroscopic property continuous-wave laser performance 
人工晶体学报
2023, 52(7): 1286
杨家伟 1,2崔开宇 1,2,*熊健 1,2饶世杰 1,2[ ... ]黄翊东 1,2,3,**
作者单位
摘要
1 清华大学电子工程系,北京 100084
2 北京国家信息科学技术研究中心,北京 100084
3 北京量子信息科学研究院,北京 100084
基于空间扫描或波长扫描的传统光谱成像设备体积庞大,无法获取动态的光谱信息。利用超表面可以实现丰富的光谱调制函数,结合计算重建和空分复用方法可以实现高光谱分辨率和空间分辨率的实时光谱成像芯片。本文介绍了超表面光谱成像的基本原理,分别阐述了基于规则形状和自由形状的超表面光谱成像芯片的设计方法与性能指标,以及基于神经网络的光谱图像快速重建算法,简述了超表面光谱成像芯片在活体大鼠脑光谱成像、人脸防伪识别、自动驾驶等领域的应用,最后讨论和展望了超表面光谱成像芯片未来的发展趋势和应用前景。
光学器件 超表面 光谱成像 自由形状超原子 神经网络 optical devices metasurface spectral imaging freeform-shaped meta-atoms neural network 
光学学报
2023, 43(16): 1623004
Author Affiliations
Abstract
1 Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua Universityhttps://ror.org/03cve4549, Beijing 100084, China
2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
The entanglement distribution network connects remote users by sharing entanglement resources, which is essential for realizing quantum internet. We propose a photonic-reconfigurable entanglement distribution network (PR-EDN) based on a silicon quantum photonic chip. The entanglement resources are generated by a quantum light source array based on spontaneous four-wave mixing in silicon waveguides and distributed to different users through time-reversed Hong–Ou–Mandel interference by on-chip Mach–Zehnder interferometers with thermo-optic phase shifters (TOPSs). A chip sample is designed and fabricated, supporting a PR-EDN with 3 subnets and 24 users. The network topology of the PR-EDN could be reconfigured in three network states by controlling the quantum interference through the TOPSs, which is demonstrated experimentally. Furthermore, a reconfigurable entanglement-based quantum key distribution network is realized as an application of the PR-EDN. The reconfigurable network topology makes the PR-EDN suitable for future quantum networks requiring complicated network control and management. Moreover, it is also shown that silicon quantum photonic chips have great potential for large-scale PR-EDN, thanks to their capacities for generating and manipulating plenty of entanglement resources.
Photonics Research
2023, 11(7): 1314
Author Affiliations
Abstract
1 Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua Universityhttps://ror.org/03cve4549, Beijing 100084, China
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3 Frontier Science Center for Quantum Information, Beijing 100084, China
4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Faint light spectroscopy has many important applications such as fluorescence spectroscopy, lidar, and astronomical observations. However, the long measurement time limits its application to real-time measurement. In this work, a photon counting reconstructive spectrometer combining metasurfaces and superconducting nanowire single-photon detectors is proposed. A prototype device was fabricated on a silicon-on-insulator substrate, and its performance was characterized. Experiment results show that this device supports spectral reconstruction of mono-color lights with a resolution of 2 nm in the wavelength region of 1500–1600 nm. Its detection efficiency is 1.4%–3.2% in this wavelength region. The measurement time required by the photon counting reconstructive spectrometer was also investigated experimentally, showing its potential to be applied in scenarios requiring real-time measurement.
Photonics Research
2023, 11(2): 234
Author Affiliations
Abstract
1 Beijing National Research Center for Information Science and Technology (BNRist), Beijing Innovation Center for Future Chips, Department of Electronic Engineering, Tsinghua University, Beijing Innovation Center for Future Chips, Beijing 100084, China
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
3 Frontier Science Center for Quantum Information, Beijing, Beijing 100084, China
4 Beijing Academy of Quantum Information Sciences, Beijing, Beijing 100193, China
Quantum key distribution (QKD) would play an important role in future information technologies due to its theoretically proven security based on the laws of quantum mechanics. How to realize QKDs among multiple users in an effective and simple way is crucial for its real applications in communication networks. In this work, we propose and demonstrate a fully connected QKD network without trusted node for a large number of users. Using flexible wavelength division multiplexing/demultiplexing and space division multiplexing, entanglement resources generated by a broadband energy-time entangled quantum light source are distributed to 40 users. Any two users share a part of entanglement resources, by which QKD is established between them. As a result, it realizes a fully connected network with 40 users and 780 QKD links. The performance of this network architecture is also discussed theoretically, showing its potential on developing quantum communication networks with large user numbers owing to its simplicity, scalability, and high efficiency.
PhotoniX
2022, 3(1): 2
Qiancheng Xu 1,2Kaiyu Cui 1,2,*Ning Wu 1,2Xue Feng 1,2[ ... ]Yidong Huang 1,2,3
Author Affiliations
Abstract
1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2 Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
3 Beijing Academy of Quantum Information Sciences, Beijing, China
Tunable coupled mechanical resonators with nonequilibrium dynamic phenomena have attracted considerable attention in quantum simulations, quantum computations, and non-Hermitian systems. In this study, we propose tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities. The excited optical mode interacts with both symmetric and antisymmetric mechanical supermodes and mediates coupling at a frequency of approximately 4.96 GHz. The mechanical-mode coupling is tuned through both optical spring and gain effects, and the reduced coupled frequency difference in non-Hermitian parameter space is observed. These results benefit research on the microscopic mechanical parity–time symmetry for topology and on-chip high-sensitivity sensors.
Photonics Research
2022, 10(8): 1819
作者单位
摘要
1 清华大学 电子工程系,量子信息前沿科学中心,北京市未来芯片技术高精尖创新中心,北京信息科学与技术国家研究中心,北京 100084
2 奥地利半导体实验室,A 9524 Villach,Austria
3 北京量子信息科学研究院,北京 100193
硫化物玻璃是发展非线性集成光学器件的良好材料,特殊的理化特性使得硫化物玻璃集成光学波导的制备成为研究的难点。对硫化物玻璃波导的制备工艺进行了综述,重点介绍利用硫化物玻璃在熔融状态下流动性好的特点,采用热熔融自回流方法制备硫化物玻璃波导的工艺。该方法避免了对硫化物玻璃薄膜完整性的破坏,以及光刻胶显影液对硫化物玻璃材料的腐蚀作用,可以得到高质量的具有小模场面积的倒脊型硫化物玻璃波导。实验测试表明,采用热熔融自回流方法制备的硫化物玻璃波导具有良好的三阶非线性光学特性和受激布里渊散射特性。最后,展望了采用该方法发展硫化物玻璃非线性集成光学器件及其片上系统的研究方向和前景。
硫化物玻璃 非线性光学器件 集成光学波导 三阶光学非线性 受激布里渊散射 Chalcogenide glass Nonlinear photonic device Integrated optical waveguide The third order nonlinearity Stimulated Brillouin scattering 
光子学报
2022, 51(5): 0551303
Author Affiliations
Abstract
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
The orbital angular momentum (OAM) carried by photons defines an infinitely dimensional discrete Hilbert space. With OAM modes, high-dimensional quantum states can be achieved for quantum communication and cryptography. Here we demonstrate a heralded single-photon source with a switchable OAM mode, which consists of a heralded single-photon source and an integrated OAM emitter as the mode converter. As the first step, the heralded single-photon source is based on the dispersion-shifted fiber. In this work, the OAM mode (quantized by topological charge l) carried by the heralded single photon (at fixed wavelength of 1555.75 nm) can be switched within the range of l=37 while the mode purity is more than 80%.
Photonics Research
2021, 9(9): 09001865
黄翊东 1,2,3,4,5,*张巍 1,2,3,4,5冯雪 1,2,4,5刘仿 1,2,4,5崔开宇 1,2,4,5
作者单位
摘要
1 清华大学电子工程系, 北京 100084
2 清华大学量子信息前沿科学中心, 北京 100084
3 北京量子信息科学研究院, 北京 100193
4 北京信息科学与技术国家研究中心, 北京 100084
5 北京市未来芯片技术高精尖创新中心, 北京 100084
微纳结构的物理机理和独特的光电特性为探索新型光电子芯片提供了可能。回顾了本研究组在微纳结构光电子芯片领域的研究成果。总结了各种微纳结构中光与物质相互作用的机理,介绍了具有自由电子辐射、实时光谱成像、声子传感、光轨道角动量辐射、光量子态产生及操控等功能的光电子芯片。
光电子学 微纳结构 光子晶体 光声晶体 自由电子辐射 光学轨道角动量 量子态产生及操控 optoelectronics micro-nano structure photonic crystals acousto-optic crystals free-electron radiation optical orbital angular momentum quantum state generation and control 
中国激光
2021, 48(15): 1513001
姚鑫 1,2†张巍 1,3,*†黄翊东 1,3
作者单位
摘要
1 量子信息前沿科学中心, 北京市未来芯片技术高精尖创新中心, 北京信息科学与技术国家研究中心,清华大学电子工程系, 北京 100084
2 中国空间技术研究院西安分院, 陕西 西安 710100
3 北京量子信息科学研究院, 北京100193
传统鬼成像利用两路光的位置-位置或动量-动量关联特性实现。当光束沿单模光纤传输时,这些关联特性是无法保持的,因此传统鬼成像无法通过单模光纤长距离传输实现。在自发非线性参量过程产生的信号光子和闲频光子之间,以及在热光分束后形成的两束光之间存在频率关联特性,这种关联特性可以在光纤传输过程中稳定保持,基于此可以实现长距离光纤传送的时域鬼成像。这些工作拓展了鬼成像的实现方法,为大地理尺度下鬼成像的应用拓展了新思路。本文综述了基于频率关联的长距离光纤传输时域鬼成像的原理和实现方法,介绍了一种时域鬼成像的典型应用——量子安全鬼成像,最后对时域鬼成像的前景进行了展望。
成像系统 量子鬼成像 热光鬼成像 频率关联 光纤传输 imaging systems quantum ghost imaging thermal ghost imaging frequency correlation fiber transmission 
激光与光电子学进展
2021, 58(10): 1011007

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!