Kaiyu Cui 1,2,*†Zhilei Huang 1†Ning Wu 1,2Qiancheng Xu 1,2[ ... ]Yidong Huang 1,2,3
Author Affiliations
Abstract
1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2 Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
3 Beijing Academy of Quantum Information Science, Beijing, China
Micro- and nanomechanical resonators have emerged as promising platforms for sensing a broad range of physical properties, such as mass, force, torque, magnetic field, and acceleration. The sensing performance relies critically on the motional mass, mechanical frequency, and linewidth of the mechanical resonator. Herein, we demonstrate a hetero optomechanical crystal (OMC) cavity based on a silicon nanobeam structure. The cavity supports phonon lasing in a fundamental mechanical mode with a frequency of 5.91 GHz, an effective mass of 116 fg, and a mechanical linewidth narrowing in the range from 3.3 MHz to 5.2 kHz, while the optomechanical coupling rate is as high as 1.9 MHz. With this phonon laser, on-chip sensing can be predicted with a resolution of δλ/λ=1.0×10-8. The use of a silicon-based hetero OMC cavity that harnesses phonon lasing could pave the way toward high-precision sensors that allow silicon monolithic integration and offer unprecedented sensitivity for a broad range of physical sensing applications.
Photonics Research
2021, 9(6): 06000937

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!