作者单位
摘要
1 流体动力基础件与机电系统全国重点实验室,浙江大学机械工程学院,浙江 杭州 310027
2 极端光学技术与仪器全国重点实验室,浙江大学光电科学与工程学院,浙江 杭州 310027
3 萨本栋微米纳米科学技术研究院,厦门大学机电工程系,福建 厦门 361102
柔性微纳传感器的新兴发展对先进制造技术提出了更高要求。其中,激光融合制造充分集成激光增材、等材、减材加工形式,凭借高精度、非接触、机理丰富、灵活可控、高效环保、多材料兼容等特点突破了传统制造在多任务、多线程、多功能复合加工中的局限,通过激光与物质相互作用实现跨尺度“控形”与“控性”,为各类柔性微纳传感器的结构-材料-功能一体化制造开辟了新途径。本文首先分析激光增材、等材与减材制造的技术特点与典型目标材料,展示激光融合制造的技术优势,接着针对近年来激光融合制造在柔性物理、化学、电生理与多模态微纳传感器中的典型应用展开讨论,最后对该技术面临的挑战以及未来发展趋势进行了总结与展望,通过多学科交叉互融,开辟柔性微纳传感器制造新路径,拓展激光制造技术的应用场景。
激光融合制造 激光-物质相互作用 微纳制造 柔性电子 柔性微纳传感器 
中国激光
2024, 51(4): 0402403
作者单位
摘要
1 苏州大学纺织与服装工程学院,江苏 苏州 215123
2 浙江大学机械工程学院,流体动力与机电系统国家重点实验室,浙江 杭州 310027
随着可穿戴电子技术的发展,柔性热电器件由于可持续供电能力、可弯曲形变性及便携性等特点成为穿戴能源设备领域的研究热点。然而,目前柔性热电器件存在拉伸性低、透气性缺乏、功能集成性差等问题,限制了其在穿戴设备中的有效应用。一维结构的纤维基可拉伸热电器件具有尺寸小、轻质、可形变性强、可编织等特点,能够实现穿戴织物的集成和人体热能的持续收集。综述可拉伸纤维基热电器件的材料、结构及制备方法,进一步讨论其在自供电传感、热能收集和热电致冷方面的应用,最后对纤维基热电器件的发展前景作出展望,并指出目前存在的关键挑战和难题。
热电材料 可拉伸热电纤维 热能收集 传感 
激光与光电子学进展
2023, 60(13): 1316010
作者单位
摘要
1 深圳技术大学中德智能制造学院,广东 深圳 518118
2 温州大学机电工程学院,浙江 温州 325200
3 浙江大学机械工程学院,流体动力与机电系统国家重点实验室,浙江 杭州 310027
Overview: Surface-enhanced Raman scattering (SERS) affords a rapid, highly sensitive, and nondestructive approach for label-free and fingerprint diagnosis of a wide range of chemicals. This technique has been applied in explosives detection, pre-cancer diagnosis, food safety, and forensic analysis, where a small number of hazardous substances can seriously affect health of human beings. Thus, it is of great significance to prepare high-performance SERS sensors. In general, the signal intensity of SERS is determined by the following three factors: 1) The enhancement effect of surface nanostructure on local electric fields; 2) The number of molecules to be detected in hot spots; 3) Performance of the Raman spectrometer. Therefore, in order to achieve high-performance SERS detection of trace molecules, current research focuses on how to increase the density of hot spots and the number of analyte molecules in the detection area. An ultrafast laser has an ultra-short pulse width and ultra-high peak power, so it can interact with the majority of materials with high processing accuracy and excellent controllability. Meanwhile, it can rapidly construct a variety of large-area micro/nano-structures on material surfaces based on facile digital programming strategies. In addition, combined with multi-beam parallel fast scanning technology, low-cost and high-efficiency machining can be realized without a special requirement for the machining environment. Based on the above advantages, the ultrafast laser has become one of the important means for the fabrication of micro/nano-structures. This is important for the commercial preparation of high-performance SERS sensors. In this paper, we focus on two aspects to introduce the ultrafast laser preparation of high-performance SERS sensors, including how to increase the density of hot spots and the number of analyte molecules in the detection region. Ultrafast lasers can prepare micro/nano-structures with local field enhancement effects by both "bottom-up" and "top-down" processing strategies. The first is based on the "bottom-up" principle, where the reduction, deposition or polymerization of atoms, molecules or other nanoparticles is controlled by ultrafast lasers to achieve additive manufacturing of micro/nano-structures. The other is based on the "top-down" principle, where materials are removed by the ultrafast laser ablation to rapidly achieve hierarchical micro/nanostructures. These structures provide abundant active hot spots for SERS detection. In particular, the superhydrophobic surfaces prepared by the ultrafast laser are one of the most effective methods to achieve the enrichment of analyte molecules. Raman scattering can be excited more effectively by enriched molecules, which is conducive to obtaining higher detection limits and realizing ultra-trace detection. Finally, a prospect for the development of laser-prepared SERS substrates is provided.
超快激光加工 拉曼光谱 表面增强拉曼散射 微纳结构 ultrafast laser fabrication Raman spectroscopy surface-enhanced Raman scattering micro/nano-structures 
光电工程
2023, 50(3): 220333

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!