作者单位
摘要
1 中国航天科工集团第三研究院航天海鹰卫星运营事业部, 北京 100070
2 中国资源卫星应用中心, 北京 100094
3 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
4 安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室, 安徽 淮南 232001
植被重金属污染监测是当今高光谱遥感监测研究的重要内容。 为了将高光谱遥感技术定性的用于植被重金属污染监测研究, 从盆栽实验采集的反射率光谱数据方面进行研究。 在实验室室内设置不同胁迫浓度的重金属铜铅玉米盆栽实验, 测定了不同浓度Cu2+和Pb2+胁迫下玉米叶片的反射率光谱和Cu2+和Pb2+含量等有关铜铅污染玉米的基础数据, 形成了关于重金属铜铅污染玉米植株的一套完整的数据集。 研究提出了一种铜铅探测指数(CLDI), 实现了不同培育期的两种玉米品种的重金属铜铅胁迫监测, 从而为当前植被重金属污染探测提供了新的思路。 研究设计了不同浓度的铜铅污染实验, 将测量获得的玉米叶片450~850 nm的光谱反射率进行一阶微分(D)和包络线去除(CR)处理后得到微分包络线去除(DCR)光谱曲线, 利用皮尔逊相关系数(r)分析DCR数据和生化数据, 选择对重金属Cu敏感的特征波段。 计算的皮尔逊相关系数表明DCR值在490~520和680~700 nm与土壤和叶片中的Cu2+含量呈现接近于1的线性正相关, 在630~650和710~750 nm呈现接近于-1的线性负相关。 选择波长505, 640, 690和730 nm的DCR值建立CLDI, 通过计算土壤和叶片中的Cu2+含量与CLDI和常规的植被指数(VIs)的皮尔逊相关系数, 将两者进行对比, 从而验证了CLDI的有效性。 选用2017年实验获取的不同品种玉米叶片光谱数据, 将CLDI同样和常规的植被指数(VIs)进行对比, 从而验证了CLDI对不同品种的玉米具有鲁棒性。 将CLDI应用到铅胁迫下玉米叶片的污染程度监测, 验证了其对于不同重金属的普适性。 结果表明, CLDI与Cu2+和Pb2+胁迫浓度相关性显著, 与其他植被指数相比, 相关性更高。 提出的CLDI探测铜铅胁迫下不同品种不同时期的玉米污染程度, 具有计算方便, 鲁棒性, 高效性、 普适性的优点。 该研究基于实验室叶片尺度, 可为冠层尺度的重金属胁迫监测提供理论基础。
高光谱遥感 玉米叶片 重金属污染 铜铅探测指数 特征波段 Hyperspectral remote sensing Maize leaves Heavy metal pollution Copper lead detection index Characteristic bands 
光谱学与光谱分析
2023, 43(4): 1268
作者单位
摘要
中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
随着人类生活质量的提高, 农产品重金属污染问题备受关注。 农作物中的重金属元素会通过食物链侵害人体健康, 而不同重金属元素对人体毒害差别较大, 因此农作物中含有重金属元素的类别识别至关重要。 传统重金属元素检测方法存在环节多、 耗时长、 成本高等缺点, 但高光谱遥感技术具有信息使用量大, 理化反演能力强, 分析速度快, 无损监测等优势, 逐渐成为农作物重金属污染分析的重要手段之一。 以不同CuSO4·5H2O和Pb(NO3)2浓度梯度土壤胁迫下典型农作物玉米生长的叶片光谱为研究对象, 引入光谱包络线去除(CR)、 光谱比值(SR)、 分数阶微分(FOD)同时结合改进红边比值指数(MSR)构建铜铅元素识别指数(CLI); 通过挑选与铜铅元素种类相关性最强的三个分数阶微分阶数的CLI值建立铜铅元素判别特征点(CLDFP); 再利用欧式聚类(EC)将训练集样本分为铜污染与铅污染两类并结合圆心连线的垂直平分线(PB), 建立基于EC-PB识别铜铅元素种类的二维坐标系下判别规则线(CLDRL)和三维坐标系下判别规则面(CLDRP), 从而实现玉米叶片光谱信息的重金属铜铅元素种类准确识别。 研究结果表明, CR-SR-FOD光谱变换处理增加了玉米叶片光谱信息与铜铅元素种类之间的相关性; 各阶次FOD对应的CLI与铜铅元素种类相关系数各不相同, 随着阶次的增加, 相关性呈现先递增后递减的趋势, 其中相关系数最高的三个阶次分别为1.2阶, 0.7阶, 1.0阶; 在二维坐标系下训练集样本判别正确率为78.95%, 验证集样本判别正确率为75.0%; 在三维坐标系下训练集样本判别正确率为76.32%, 验证集样本判别正确率为75.0%, 证明了基于EC-PB构建的二维CLDRL和三维CLDRP光谱判别规则可以有效识别玉米叶片中铜铅污染元素种类。
光谱分析 玉米叶片 光谱变换 重金属元素识别 欧式聚类 垂直平分线 Spectral analysis Corn leaf Spectral transformation Identification of heavy metal elements Euclidean cluster Perpendicular bisector 
光谱学与光谱分析
2022, 42(10): 3256
作者单位
摘要
1 中国资源卫星应用中心, 北京 100094
2 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
3 安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室, 安徽 淮南 232001
4 安徽理工大学测绘学院, 安徽 淮南 232001
目前我国土壤重金属污染日趋严重, 高光谱遥感因具有光谱分辨率高、 图谱合一等特点成为农作物重金属污染研究的热点。 农作物受重金属污染后其光谱会发生细微的改变, 如何探寻叶片光谱中对重金属污染敏感的波段是目前的一种研究方向。 提出了一种新型铜胁迫植被指数(NCSVI)来探索铜胁迫下玉米光谱敏感区间。 通过设计不同梯度下的玉米铜胁迫实验, 测定每个铜胁迫浓度下玉米叶片的光谱和Cu2+的含量。 首先, 将玉米叶片光谱分为11个子区间, 以每个子区间的中间波长对应的光谱反射率构建各自的NCSVI。 然后, 计算NCSVI与玉米叶片中Cu2+含量的相关性系数R及均方根误差RMSE, 结合水波段指数(WBI)、 改进的叶绿素吸收率指数(MCARI)和归一化水指数(NDWI)这三种常规植被指数进行对比。 最后, 选用其他年份相同实验条件下获取的玉米叶片光谱进行验证, 确认NCSVI的稳定性和有效性。 结果表明, 11个子区间中只有绿峰、 红边、 近谷和近峰A这四个子区间对应的NCSVI与玉米叶片Cu2+含量相关性系数的绝对值高于0.9, 分别为-0.94, -0.97, -0.94和-0.96, 均方根误差均低于15, 分别为12.57, 8.71, 12.71和10.06, 而WBI, MCARI和NDWI的相关性系数最高的仅达到0.75, 均方根误差最小的为24.21, 说明四个子区间对应的NCSVI对玉米叶片铜污染有着更好的指示性。 利用不同年份相同条件下的玉米实验对以上结果进行验证, 发现11个子区间中, R绝对值大于0.9、 RMSE小于1.55的只有绿峰、 红边、 近谷和近峰A这四个子区间, 其中R分别为-0.9, -0.97, -0.97和-0.93, RMSE分别为1.50, 0.85, 0.78和1.29, 均优于WBI, MCARI和NDWI, 与2016年实验得出的敏感子区间一致, 说明NCSVI能探测铜胁迫下玉米光谱的敏感区间, 具备效率高、 稳定性好的特点。 所提出的NCSVI指数可作为监测玉米叶片铜污染的一种方法, 并为其他农作物重金属污染研究提供一定的理论支持。
高光谱遥感 玉米叶片 重金属污染 新型铜胁迫植被指数 光谱敏感区间 Hyperspectral remote sensing Corn leaves Heavy metal pollution New copper stress vegetation index Spectral sensitive interval 
光谱学与光谱分析
2021, 41(8): 2604
作者单位
摘要
中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
重金属污染农作物后可通过食物链进入人体从而严重危害身体健康。 如何快速准确地监测农作物中重金属含量已成为当今生态与粮食安全等领域的重要研究内容。 常规的生化监测方法存在操作繁琐、 过程长、 具有破坏性等缺点, 而高光谱遥感具有光谱分辨率高、 信息量大、 生化反演能力强、 方便快捷、 对监测对象无损伤等优势, 因此利用高光谱遥感技术监测农作物中重金属含量已成为遥感领域的热点研究之一。 以不同浓度Pb(NO3)2溶液胁迫下盆栽玉米植株为研究对象, 基于不同铅离子(Pb2+)胁迫梯度下玉米叶片的反射光谱及其中Pb2+含量的测定数据, 结合奇异值分解(SVD)理论和自适应模糊神经网络推理系统(ANFIS)结构, 建立了一种Pb2+含量预测的SVD-ANFIS模型。 首先对各胁迫梯度下玉米的老叶(O)、 中叶(M)、 新叶(N)三种叶片的反射光谱数据进行SVD处理, 获取原始光谱信息的奇异值; 然后选择O, M和N叶片对应的奇异值来寻求ANFIS结构的最佳输入组合, 最终选定O-M(双输入)组合作为ANFIS结构的输入量, 通过训练和学习获得最优模糊规则库后, ANFIS结构的输出量即为叶片中Pb2+含量, 从而实现了SVD-ANFIS模型的预测性能。 研究结果表明, 该模型的输出误差值较小, 精度较高, 在模糊训练过程中隶属函数选为钟型函数时预测效果最佳。 利用多参数的反向传播(BP)神经网络预测模型对SVD-ANFIS模型的预测优越性进行验证时, 得到BP模型和SVD-ANFIS模型的决定系数(R2)分别为0.977 6和0.988 7, 均方根误差(RMSE)分别为2.455 9和0.601 3, 可见SVD-ANFIS模型的拟合度更高, 预测效果更好。 同时选取不同年份的Pb污染玉米叶片等光谱数据对SVD-ANFIS模型进行可行性检验, 其R2和RMSE分别为0.986 4和0.887 4, 说明SVD-ANFIS模型能较好的用于玉米叶片中Pb2+含量预测且具有较高的鲁棒性, 可作为预测玉米叶片中重金属含量的一种方法。
光谱分析 玉米叶片 奇异值分解 重金属污染 预测模型 Spectral analysis Corn leaves Singular value decomposition Adaptive network-based fuzzy inference system ANFIS Heavy metal pollution Prediction model 
光谱学与光谱分析
2021, 41(6): 1930
作者单位
摘要
中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
近年来在工业化和城镇化快速发展的地区, 由重金属污染导致的环境问题尤为突出, 特别是农业重金属污染更为社会所关注, 因此, 探索快速便捷的重金属污染甄别与监测方法极为重要。 高光谱遥感作为新兴的重金属污染监测技术已有了深入研究。 提出了固有波长尺度分解(IWD)概念和方法, 并结合Hankel矩阵和奇异值分解(SVD)等建立了植被重金属污染程度预测的IWD-Hankel-SVD模型, 该模型分为单变量模型和多变量模型。 单变量模型主要是通过重金属污染的植被光谱IWD处理来获取光谱信息固有旋转分量(PRC)以提取最佳PRC的有效特征波段; 在对各特征波段所构建的Hankel矩阵进行奇异值分解(SVD)基础上, 依据获得该模型的奇异熵实现重金属污染信息预测。 多变量模型是以植物叶绿素浓度相对值、 单变量模型奇异熵作为参数实现重金属污染的信息预测。 根据不同重金属Cu2+胁迫梯度下玉米植株污染的叶片光谱和叶绿素浓度以及叶片中Cu2+含量测定的数据, 首先对不同浓度Cu2+胁迫下玉米叶片光谱进行IWD分析, 获得能够较好保留原始输入光谱信息的最佳PRC, 并从中提取到有效特征波段553~680, 681~780, 1 266~1 429, 1 430~1 631, 1 836~1 913和1 914~2 111 nm; 然后对每一个特征波段构造其Hankel矩阵并进行SVD处理, 以求取单变量的IWD-Hankel-SVD模型奇异熵; 最后通过各特征波段所对应模型奇异熵与玉米叶片中Cu2+含量的相关分析, 得到依据1 266~1 429和1 836~1 913 nm特征波段计算出奇异熵与玉米叶片中Cu2+含量的决定系数R2均高达0.9左右, 说明这两个特征波段用于IWD-Hankel-SVD模型的Cu污染程度预测更具优越性和解释能力。 同时, 再把玉米叶片中叶绿素浓度相对值、 1 266~1 429和1 836~1 913 nm特征波段相应模型奇异熵作为参数, 采用偏最小二乘回归分析, 得出多变量IWD-Hankel-SVD模型的玉米叶片Cu污染程度预测能力更强, 决定系数R2达到0.9476, 证明了多变量模型更具有鲁棒性和稳健性。
光谱分析 玉米叶片 重金属铜污染 固有波长尺度分解 预测模型 Spectral analysis Corn leaf Heavy metal copper pollution Intrinsic wavelength-scale decomposition Prediction model 
光谱学与光谱分析
2021, 41(5): 1505
作者单位
摘要
1 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
2 华北理工大学, 河北 唐山 063210
铁矿是全球储量最高的金属矿产之一。 全铁含量是评价铁矿石、 铁矿粉品质的重要指标, 在铁矿开采、 矿石精选、 矿粉冶炼等生产环节中有特殊意义。 传统的铁矿粉全铁含量化学分析方法存在耗时久、 操作复杂、 污染严重等缺点, 因此, 探寻一种快速、 有效、 无污染的检测方法越来越成为矿山环境的研究热点。 高光谱技术具有光谱分辨率高、 曲线连续、 无损伤、 无污染、 可对物质特征或成分进行精确探测等特点。 使用铁矿粉高光谱数据, 通过建立用于光谱特征筛选的光谱特征重要性评分(SFIM)指标, 并结合随机森林回归(RFR)方法构建铁矿粉全铁含量预测的SFIM-RFR模型。 以河北省阳原县三义庄铁矿为研究区, 于2018年11月与2019年3月在研究区收集铁精粉、 铁尾砂原料, 分别制作第一批次的训练组和验证组铁矿粉试样以及第二批次的二次验证组铁矿粉试样, 并使用ASD Field Spec4型光谱仪测量试样的光谱反射率; 然后使用第一批次的训练组光谱数据训练SFIM-RFR模型, 对第一批次的验证组样本的全铁含量进行预测, 同时采用常规RFR、 线性回归(LR)预测模型来对比分析铁矿粉样本全铁含量预测结果; 最后使用二次验证组光谱数据检验多模型鲁棒性。 结果表明: SFIM-RFR, RFR和LR模型全铁含量预测结果与2018年11月采集的验证组样本全铁含量真实值的确定系数(R-Square)分别为0.991 8, 0.988 4和0.898 7, 均方根误差(RMSE)分别为0.016 9, 0.020 1和0.059 6, 多模型预测效果总体较好, SFIM-RFR模型预测结果误差最小, 说明了SFIM-RFR模型用于预测铁矿粉中全铁含量的可行性和有效性, 且SFIM-RFR模型预测效果优于常规的预测模型; SFIM-RFR, RFR和LR模型全铁含量预测结果与2019年3月采集的二次验证组样本全铁含量真实值的R-square分别为0.976 8, 0.974 5和0.914 0, RMSE分别为0.034 6, 0.036 2和0.071 9, 证明了SFIM-RFR模型的预测效果较为理想且鲁棒性很强。
高光谱 铁矿粉全铁含量 预测模型 光谱特征重要性评分 随机森林回归 Hyperspectral Total iron contents of iron ore powder Prediction model SFIM Random forest regression 
光谱学与光谱分析
2020, 40(8): 2546
作者单位
摘要
1 山东建筑大学测绘地理信息学院, 山东 济南 250101
2 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083
近年来, 全球工业快速发展和城市化的推进引发了一系列环境问题, 其中土壤重金属铅(Pb)污染引起了科研人员的广泛关注。 X射线荧光(XRF)光谱技术具有成本低、 分析速度快、 适合大面积监测等优势, 已被广泛应用在土壤污染检测与生态环境保护等多个领域, 发展前景广阔, 因此充分挖掘土壤XRF光谱信息具有很强的现实意义, 可为高效地进行土壤污染检测、 土壤环境生态指标参量反演及矿区重金属污染早期预警等提供解决方案。 目前关于XRF光谱研究大多集中在土壤重金属浓度测量结果的精度评价和环境质量评估, 而对于土壤XRF光谱差异特征变化的深入分析研究较少。 时频分析可将时域复杂信号变换到频率域空间, 从频率域角度检测光谱、 信号中存在的异常信息, 是一种有效的谱差异特征变化检测方法, 其中, 谐波分析(HA)可用于电磁信号去噪; 平滑伪魏格纳分布(SPWVD)可筛选合适的基函数, 突出信号时频局域性细节特征。 首先采用HA方法探究不同Pb浓度土壤XRF光谱的去噪效果, 然后利用光谱的SPWVD研究实地采样土壤样品的去噪XRF光谱局部规律。 研究结果表明: 当谐波分解次数为400时, 土壤XRF光谱去燥效果较好并节省了时间, 且保留了光谱的特征。 土壤样品Pb浓度与XRF光谱的SPWVD在400和600~700波段序列上的频率峰值的分布具有一定的规律性, 根据此规律性可识别该地区土壤的Pb浓度超标: 全部实地采样土壤中, 能够识别75%的Pb浓度不超标的样品, 在波段序列为400附近有1个较高的频率峰(频率小于400 Hz)或有2个很强的频率峰值(频率大于400 Hz); 全部实地采样土壤中, 能够识别79.17%的Pb浓度超标的样品, 在波段序列为400附近有1个很强的频率峰(频率大于400 Hz), 且在600~700波段序列之间有3个层次明显的频率峰分布, 据此推断该地区土壤Pb浓度超标的XRF光谱特征波段区间为6.42和9.42~10.92 keV。 因此, 研究通过引入时频分析法实现了对土壤XRF光谱频域甄析和可视化显现, 为深度挖掘Pb污染谱规律特征及异常信息提供一种新思路。
重金属 土壤X射线荧光光谱 谐波分析 平滑伪维格纳-威尔分布 Heavy metal Soil XRF spectra Harmonic analysis Smoothed pseudo Wigner-Ville distribution 
光谱学与光谱分析
2020, 40(9): 2875
作者单位
摘要
1 煤炭资源与安全开采国家重点实验室, 中国矿业大学(北京), 北京 100083
2 北京师范大学地理科学学部, 北京 100875
我国农田重金属污染形势不容乐观。 土壤中的重金属被作物根系吸收后会影响作物正常的生长发育, 降低农产品质量, 进而通过食物链进入人体, 危害人体健康。 高光谱遥感为实时动态高效监测作物重金属污染提供了可能。 设置不同浓度Cu2+胁迫梯度的玉米盆栽实验, 并采集苗期、 拔节期和穗期玉米老、 中、 新叶片光谱数据, 测定不同生长时期叶片叶绿素含量、 叶片Cu2+含量。 基于所获取的光谱数据、 叶绿素含量和叶片Cu2+含量, 结合相关分析法、 最佳指数法(OIF)和偏最小二乘法(PLS)构建OIF-PLS法提取含有Cu2+污染信息的特征波段。 首先依据苗期、 拔节期和穗期叶片叶绿素含量及穗期叶片Cu2+含量与相应叶片光谱的相关系数初步筛选特征波段; 然后, 从中选取三个波段计算最佳指数因子, 并以该三个波段为自变量, 对玉米叶片Cu2+含量进行偏最小二乘回归分析, 计算均方根误差; 最后根据最佳指数因子最大、 均方根误差最小的原则选取最佳特征波段。 基于OIF-PLS法所选取的特征波段构造植被指数OIFPLSI监测重金属铜污染, 并与常规的红边归一化植被指数(NDVI705)、 改进红边比值植被指数(mSR705)、 红边植被胁迫指数(RVSI)和光化学指数(PRI)监测结果做比较, 验证OIFPLSI的有效性和优越性。 另外利用在相同的实验方法下获取的不同年份的数据对OIFPLSI进行检验, 验证OIFPLSI的适用性和稳定性。 实验结果表明, 基于OIF-PLS法提取的特征波段(542, 701和712 nm)比基于OIF法提取的特征波段(602, 711和712 nm)能更好地反映Cu2+污染信息; 植被指数OIFPLSI与叶片Cu2+含量显著正相关, 相关性优于NDVI705, mSR705, RVSI和PRI; OIFPLSI与叶片叶绿素含量显著负相关, 与土壤中Cu2+含量显著正相关; 不同生长时期OIFPLSI与土壤中Cu2+含量的相关性高低依次为拔节期、 穗期、 苗期。 基于不同年份数据验证结果表明, OIFPLSI与叶片Cu2+含量显著正相关, OIFPLSI具有较强的稳定性。 基于OIF-PLS法所提取的特征波段构建的OIFPLSI能够较好地诊断分析玉米叶片铜污染水平, 可为作物重金属污染监测提供一定的技术参考。
重金属污染 光谱分析 特征波段 植被指数 农作物 Heavy metal pollution Spectral analysis Feature band Vegetation index Crop 
光谱学与光谱分析
2020, 40(2): 529
作者单位
摘要
中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083
高光谱遥感监测农作物重金属污染已成为遥感研究的重要内容之一。 受污染的作物叶片中重金属含量映射到光谱上的信息量差异较微弱, 如何灵敏地挖掘其所包含的价值信息具备一定挑战性。 以农作物叶片光谱为研究对象, 通过多个光谱特征波段组合的方式, 提出了一种铜污染植被指数(CPVI)的污染程度探测模型, 来表征重金属Cu对农作物的污染程度。 首先设置盆栽实验, 将不同浓度梯度的CuSO4·5H2O粉末添加到土壤中, 模拟Cu污染土壤环境, 胁迫玉米生长。 采集玉米穗期的老、 中、 新叶片光谱, 测定叶片中Cu2+含量及相对叶绿素浓度。 而后利用随机选取的58组玉米叶片光谱作为实验数据, 在380~900 nm波长范围内选取波长λ1和λ2的两组叶片光谱反射率并计算相应的CPVI[λ1, λ2]模型指数及其与对应叶片中Cu2+含量的皮尔逊相关系数, 得到相关性特征绝对值矩阵。 其次, 根据得到的相关性特征绝对值矩阵, 提取皮尔逊相关系数较高的光谱特征波段690和465 nm, 并结合波段850 nm建立针对玉米叶片的铜污染植被指数(CPVIm)。 之后, 利用另外26组数据对CPVIm指数进行检验, 同时将该指数与归一化植被指数(NDVI)、 陆地叶绿素指数(MTCI)等常规植被指数进行比较以验证CPVIm的有效性与优越性。 结果表明, NDVI, MTCI, REP和DVI与叶片中Cu2+含量相关系数最高仅为0.68, 残差平方和RSS最低为70.99, 而CPVIm与叶片中Cu2+含量显著负相关, 相关系数达-0.80, 残差平方和为48.52, 均优于NDVI和MTCI等常规植被指数, 证明CPVIm对重金属胁迫更敏感。 同时利用两期不同年份不同品种的玉米光谱数据进行CPVIm指数的鲁棒性验证, CPVIm与叶片Cu2+含量的相关系数r分别为-0.90和-0.96, 均显著相关, 说明该指数对于不同品种的玉米污染程度探测仍具有良好的适用性。 另外, 利用玉米叶片中Cu2+含量、 CPVIm和叶片中叶绿素相对浓度构建三维分析模型, 从空间角度直观地反映了三者之间具有一定的相关关系。 通过光谱特征波段组合方式构建的CPVI探测模型可作为评价农作物重金属污染程度的参考方法, 基于该方法构建的CPVIm指数可有效甄别玉米受重金属Cu2+污染的程度。
光谱 玉米叶片 皮尔逊相关系数矩阵 铜污染植被指数 叶绿素 Spectrum Maize leaves Pearson correlation coefficient matrix Copper pollution vegetation index Chlorophyll 
光谱学与光谱分析
2020, 40(1): 209
作者单位
摘要
中国矿业大学(北京)煤炭资源与安全开采国家重点实验室, 北京 100083
农作物重金属污染监测是当今高光谱遥感研究的重要内容之一, 旨在设计一种新的窄带植被指数, 以实现不同培育期的两种玉米品种的重金属铜胁迫监测。 研究设计了不同浓度的铜污染实验, 采用SVCHR-1024I型高性能地物光谱仪测量不同浓度铜离子(Cu2+)胁迫下玉米叶片的光谱反射率, 并同步获取了玉米叶片中Cu2+含量数据。 首先, 对玉米叶片原始光谱数据进行一阶差分处理, 并计算一阶差分反射率与叶片中Cu2+含量的相关系数(r), 筛选对铜胁迫敏感的波段。 计算结果显示, 489~497, 632和677 nm波长附近的一阶差分反射率与叶片中Cu2+含量显著相关, 可将其视为敏感波段。 其次, 根据以上3个敏感波段, 建立基于一阶差分反射率的铜胁迫植被指数(dVI)。 对所有可能的dVIs和Cu2+含量进行一元回归分析, 并采用决定系数(R2)和均方根误差(RMSE)对回归结果进行评估, 以筛选最佳指数。 最后, 采用不同生长年份的玉米实验数据对敏感波段的稳定性及dVI的适用性进行了验证评估; 同时, 通过与归一化植被指数(NDVI)、 红边叶绿素指数(CIred-edge)、 红边位置(REP)、 光化学反射指数(PRI)等常规重金属胁迫植被指数进行应用比较, 证明dVI更具有优越性。 结果表明: 一阶差分处理后, 在450~500, 630~680和677 nm波长处的叶片反射率与Cu2+含量的相关系数明显增大。 基于一阶差分反射率的特征波段具有稳定性, 对于不同生长年份的玉米叶片数据, 特征波段的波长位置不变。 一元回归分析结果表明, 结合497, 632和677 nm波长的一阶差分反射率的指数与Cu2+含量具有显著的相关性, 对于不同生长年份的2种玉米品种数据集, R2都高达075以上。 另外, 与常规植被指数比较结果表明, 该研究所提出的dVI具有更好的鲁棒性及有效性, 可为冠层尺度的重金属胁迫监测提供理论基础。
玉米 铜胁迫 植被指数 特征波段 高光谱 Corn Copper stress Vegetation index Characteristic wavelength Hyperspectral 
光谱学与光谱分析
2019, 39(9): 2823

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!