作者单位
摘要
南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院, 江苏 南京 210009
现代科技的发展对高频声表面波(SAW)器件的需求不断增加, 对其工作频率也提出了更高的要求。为了提高SAW器件的频率, 该文构建了一种IDTs电极分层布局的器件模型, 即IDTs/AlN/IDTs/R-sapphire结构, 并采用有限元法分析其声学性能, 包括导纳、相速度、机电耦合系数等。结果表明, IDTs/AlN/IDTs/R-sapphire结构可激发出瑞利波, 且当AlN压电薄膜厚度hAlN=0.4λ(λ为器件周期), 水平中心距Pb=4 μm时, 其工作频率为692 MHz, 传统的IDTs/AlN/R-sapphire结构器件提高了近1倍(356 MHz), 而此时机电耦合系数K2为0.3%, 比传统结构高。另外, 通过优化IDTs电极的结构参数可进一步改善、调制瑞利波器件的性能。当IDTs的上层铜电极和下层铝电极厚度之比Δh=1.2, Pb=4 μm, hAlN/λ=0.5时, 瑞利波器件的谐振频率为657.9 MHz, K2=1.27%; 当Pb=6 μm时, 瑞利波的工作频率为461 MHz, 机电耦合系数达到最大(K2max=1.34%), 较传统IDTs单层布局结构瑞利波器件分别提升了30%和300%。结果表明, IDTs电极分层布局结构不仅可有效地提高SAW器件的工作频率和机电耦合系数, 也可以降低高频SAW器件的制备难度。
声表面波 叉指换能器 有限元分析 机电耦合系数 瑞利波 surface acoustic wave(SAW) interdigital transducer(IDT) finite element analysis electro-mechanical coupling coefficient Rayleigh wave 
压电与声光
2023, 45(1): 11

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!