作者单位
摘要
1 中北大学信息与通信工程学院, 山西 太原 030051
2 中北大学机电工程学院, 山西 太原 030051
3 中国兵器工业集团第五研究所, 吉林 长春 130012
高光谱成像凭借高的光谱分辨率、 图谱合一、 波段多的特点, 能够为待分类目标提供多维的参考信息, 从而提高分类精度。 爆炸破片的识别回收能够为爆炸威力的评估和防爆措施的设计提供参考。 针对当前破片检测中多采用可见光波段或红外波段等单个波段进行检测, 忽略了破片目标与背景对不同波长的光有着不同的吸收程度, 没有将多波段破片特征充分利用, 为此结合高光谱检测手段, 提出了一种空间分割结合光谱信息的爆炸破片识别方法。 在实验室环境下, 首先采集铁质破片、 石头、 树叶的高光谱图像, 对采集的样本图像数据做预处理, 包括去噪声以及黑白校正反演反射率信息等, 感兴趣区域随机提取三类样本像素点共750个, 随机选取600个点作为训练集其余作为测试集, 通过训练后得到预测准确度分别为88%、 88%、 94%的决策树模型。 其次模拟了铁质破片散落在含有石头树叶的沙土中的场景并采集其高光谱数据, 通过前后级联的空谱融合方法, 在空域经过图像增强和去噪等预处理之后, 采用边缘检测结合区域生长以及形态学处理的方法对空间图像进行分割, 得到沙土上有形态的目标, 空间分割的交并比(IOU)达到93.5%, 真阳率(TPR)达到97.4%; 然后结合光谱域训练得到的决策树模型, 对各个分割区域的每个像素点进行谱域的类型识别, 参与分类的三类像素点个数分别为146 172、 50 484、 213 438, 识别准确度分别为87%、 86%、 96%; 最后将分类结果可视化, 以每个区域像素点最多的一类代表该区域类别, 将目标破片与石子和树叶两种背景进行了准确的识别, 以标定后的分割图像为标准, 三类像素点个数分别为155 502、 52 045、 217 794, 识别率分别为94%、 97%、 98%。 分析结果表明空间分割结合光谱信息的识别方法能够有效利用空间和高光谱的特征信息对铁质破片目标进行准确识别。 同时验证了使用高光谱成像进行空谱联合识别爆炸破片的科学性以及可行性, 对未来采用智能化识别破片的方式评估破片战斗部威力具有一定的实用意义。
高光谱成像 空间分割 决策树 铁质破片 分类识别 Hyperspectral imaging Spatial segmentation Decision trees Iron fragments Classification and identification 
光谱学与光谱分析
2023, 43(4): 997
作者单位
摘要
1 中北大学 信息与通信工程学院,太原03005
2 中北大学 电子测试技术国家重点实验室,太原030051
3 中北大学 机电工程学院,太原00051
以共轭涡旋光干涉原理为基础,理论分析了干涉图像旋转角度和位移量的对应关系,利用光学仿真系统验证了理论的可行性。采用基于空间光调制器和改进型的马赫⁃泽德干涉仪组成的共轭涡旋光干涉测量系统,利用不同拓扑荷数的共轭涡旋光实验测量了纳米位移台的位移变化。实验结果表明,在位移量为100 nm、200 nm和250 nm的情况下,拓扑荷数为3时的相对误差最小,分别为2.19%、1.28%和1.27%。研究结果有助于提高基于共轭涡旋光干涉位移测量的精度。
物理光学 涡旋光 位移测量 拓扑荷数 相对误差 physical optics vortex beam displacement measurement topological charge relative error 
光电子技术
2023, 43(1): 11
作者单位
摘要
1 中北大学信息与通信工程学院,山西 太原 030051
2 中北大学电子测试技术国家重点实验室,山西 太原 030051
为探究双涡旋光干涉图样对微测量精度的影响,基于双涡旋光干涉原理,提出一种测量涡旋光自干涉图样的方法。分析了双涡旋光干涉图像的影响因素,设计并搭建了测量双涡旋光剪切干涉图样特性的光学系统。通过采集同一条件下物体移到不同距离后的双涡旋光干涉图像,利用图像相关法计算分析涡旋光相位奇点位置与拓扑荷数对双涡旋光干涉图像的影响,将实验结果与理论值对比发现条纹倾斜角和宽度分别为0°和0.1714 mm时,两相位奇点像素位置分别为(351,251)和(151,251)、拓扑荷数为1的双涡旋光干涉图像测量偏差值最小,即两光束相位奇点位于图像中心且连线方向正交于条纹方向的低拓扑荷数双涡旋光干涉图像更适用于微测量领域。
几何光学 涡旋光 剪切干涉 干涉图样 图像互相关 
激光与光电子学进展
2021, 58(11): 1108001
赵冬娥 1,2王思育 1马亚云 1张斌 1,2[ ... ]褚文博 1,2
作者单位
摘要
1 中北大学 信息与通信工程学院,山西 太原 030051
2 中北大学 电子测试技术国家重点实验室,山西 太原 030051
基于涡旋光与球面波的干涉原理,提出一种物体微位移的光学测量方法。改进马赫泽德干涉光路,其中一束光照射至空间光调制器产生涡旋光束作为参考光,另一束光经透镜变为球面波后照射至物体上,两束光干涉后干涉条纹呈螺旋状分布。当物体发生微小位移时两束光的光程差改变,螺旋干涉条纹发生旋转,通过干涉条纹的旋转角度可以确定物体的微位移量。经理论分析、仿真和实验证明:基于涡旋光与球面波干涉螺旋条纹旋转角度的变化能够实时监测物体位移量的变化,同时可以有效计算物体的微位移。实验中,测量物体的产生位移量为27 nm,通过涡旋光与球面波干涉螺旋条纹旋转角度的变化实际测得物体的位移为25.75 nm,误差为1.25 nm。
涡旋光 微位移 螺旋相位 空间光调制器 vortex beam micrometric displacement spiral phase spatial light modulator 
红外与激光工程
2020, 49(4): 0413005
作者单位
摘要
中北大学 电子测试技术国防科技重点实验室, 山西 太原 030000
在原向反射式激光光幕测速技术中, 针对半导体激光光源产生的激光光束散射角使得出射光幕厚度不一致、原向反射屏产生的反射光幕剩余发散角使反射光幕厚度不一致这两方面导致弹丸穿过光幕不同位置触发光幕响应时间不一致的问题, 根据几何光学原理, 对半导体激光器弧矢与子午方向建立数学模型, 设计了具有不同面型的非球面准直透镜组, 将出射光斑尺寸控制在1 mm之内且子午和弧矢方向发散角分别为0.13 mrad、0.46 mrad。出射光束经过Powell透镜一维扩束后, 形成厚度为1 mm、均匀度达到85.7%的扇形出射光幕, 经过原向反射后, 配合狭缝光阑使反射光幕有效厚度控制在1 mm。使用Zemax软件模拟弹丸过靶仿真, 弹丸不遮挡系统光幕时探测器接收到原向反射光强1.54 mW, 弹丸遮挡系统光幕时探测器接收到原向反射光强为1.03 mW。当弹丸紧贴出射光幕侧面边缘(即1 mm光幕边缘), 分别距离光源100 mm、300 mm、500 mm处的弹丸触发探测器接收到的光强大小均为1.54 mW, 显然, 光强相对于无弹丸遮挡光幕情况下没有产生变化, 证明系统有效可探测光幕厚度一致且为1 mm。该结果表明, 本研究方案具有可行性。
激光光幕 高斯光束 准直 一维扩束 laser light curtain Gaussian beam collimation one dimensional beam expanding Zemax Zemax 
应用光学
2019, 40(2): 233

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!