赖溥祥 1,2,3,4,*赵麒 1,2周颖颖 1,2程圣福 1,2[ ... ]仲天庭 1,2,**
作者单位
摘要
1 香港理工大学生物医学工程系,香港 九龙999077
2 香港理工大学深圳研究院,广东 深圳 518055
3 香港理工大学光子技术研究院,香港 九龙999077
4 香港理工大学体育科技研究院,香港 九龙999077

光学技术在生物医学中扮演着越来越重要的角色,其非电离辐射、高分辨率、高对比度和对生物组织异变高度灵敏等特性使其非常适用于生物组织的研究,包括成像、传感、治疗、刺激以及控制等。然而由于光折射因子在生物组织中的分布是不均匀的,光在生物组织中的传播会受到很强的散射影响,故纯光学技术的穿透深度和空间分辨率是“鱼和熊掌不可兼得”;高分辨率光学成像应用仅限于样品浅表层,当成像深度增加时分辨率急剧下降。实现光在深层生物组织里的高分辨率成像或应用是人们期盼已久的目标。近年来,为解决这一问题,研究者提出了不同的方法,例如切换到更长的光波长以减小组织散射系数,在信号检测时将漫射光转换为散射不明显的超声信号,逆转或者预先补偿由光的多次散射所带来的相位畸变,或借助光纤等微创光学通道实现深层生物组织的高分辨率光学成像、刺激等。基于团队在深层生物组织光学相关领域多年的耕耘,从光在生物组织中的传播特性出发,梳理和总结了近年来研究人员在光-声结合和光学波前整形技术等方面展开的诸多探索,以及在生物组织操控、成像、光学计算以及人工智能等领域中的应用尝试。虽然尚有诸多不足,但随着硬件设备的更新和计算技术的发展,在不远的将来有望实现活体深层生物组织光学高分辨率应用。在这一求索过程中,新方法和新能力将不断激发新的应用灵感,为光学尤其是生物医学光子学带来全新的理念和机遇。

生物光学 光学成像 生物医学光子学 深层组织 光学波前整形 光声成像 
中国激光
2024, 51(1): 0107003
李迟件 1,2姚靖 2,3,4高玉峰 2赖溥祥 3,4[ ... ]郑炜 2,*
作者单位
摘要
1 曲阜师范大学网络空间安全学院,山东 济宁 273100
2 中国科学院深圳先进技术研究院生物医学光学与分子影像研究中心,广东 深圳 518055
3 香港理工大学生物医学工程系,香港 999077
4 香港理工大学深圳研究院,广东 深圳 518055
双光子成像技术已被广泛应用于活体肿瘤成像、神经功能成像以及大脑疾病研究等领域,但双光子成像视场较小(视场直径一般在1 mm以内),限制了其进一步应用。虽然通过特殊的光学设计或者自适应光学技术能够有效增大视场,但复杂的光路设计、高昂的器件成本以及繁琐的操作过程限制了这些技术的推广。提出了一种利用深度学习技术替代自适应光学技术扩展双光子成像视场的新思路,在低成本(无须特殊物镜,无须相位补偿装置)、易操作的前提下实现了大视场双光子成像。设计了一种适用于光学显微系统中扩展双光子成像视场的nBRAnet网络框架,为使该网络框架可以更好地利用特征图信息,在该框架中引入残差模块和空间注意力机制,同时去除了数据归一化处理,以增加图像对比度信息。实验结果表明:所提深度学习方法可以有效地代替自适应光学技术,增强扩展视场中的精细结构特征,并恢复扩展视场的成像分辨率和信噪比,使双光子成像视场直径扩展到3.46 mm,峰值信噪比超过27 dB。深度学习方法具有成本低、操作简单、图像增强效果显著等特点,有望为跨区域脑成像或全脑成像提供一种经济实用的方案。
显微 深度学习 自适应光学 大视场 双光子成像 
中国激光
2023, 50(9): 0907107
姚靖 1,2,3,4余志鹏 1,2,4高玉峰 3叶世蔚 3[ ... ]赖溥祥 1,2,4
作者单位
摘要
1 香港理工大学 生物医学工程系,香港特别行政区
2 香港理工大学深圳研究院,广东 深圳 518055
3 中国科学院深圳先进技术研究院 生物医学光学与分子影像研究中心,广东 深圳 518055
4 香港理工大学 光子学研究院,香港特别行政区
双光子显微成像具备高分辨率、天然层析能力和大穿透深度等特点,在活体动物成像中发挥着重要作用。然而,如何在维持高分辨率的条件下,扩大双光子的成像视场,来满足生物医学中对大规模动态反应的监测需求,一直以来都是光学显微成像领域的难点,也是科研关注的重点。综述了大视场双光子成像技术的研究进展。首先介绍了双光子显微成像系统的产生背景和设计原理,并从光学不变量的角度阐述了实现大视场双光子成像的理论基础。然后重点回顾了现有的几种大视场双光子成像方法,分别包括了扫描中继系统的边缘像差校准、高通量物镜的设计研发和自适应光学方法的使用。基于双光子成像的高时间和空间分辨特性,大视场双光子成像技术将成为一种在脑科学等需介观高分辨成像领域的应用中实现大区域动态监测的强有力的工具。
大视场 双光子显微镜 成像物镜 像差 自适应光学 光学不变量 large field-of-view two-photon microscopy imaging objective lens aberration adaptive optics optical invariant 
红外与激光工程
2022, 51(11): 20220550

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!