陈茂庆 1,3,*刘思源 1,3蔡露 1,3刘强 1,3赵勇 1,2,3,**
作者单位
摘要
1 东北大学信息科学与工程学院,辽宁 沈阳 110819
2 东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819
3 河北省微纳精密光学传感与检测技术重点实验室,河北 秦皇岛 066004
将光纤法布里-珀罗(法珀)微腔与微波导相结合,提出一种光纤法珀微波导腔高灵敏度折射率传感器。光纤法珀微腔可以将光场限制在微米量级的区域内,并对腔内的微波导结构起支撑保护作用;微波导在保证结构良好导光能力的同时,基于其强倏逝场特性,进一步提升整体结构的折射率灵敏度。此外,基于飞秒激光双光子聚合高精度3D打印技术,可实现波导直径仅为2 μm的光纤法珀微波导腔,并保证良好的制备重复性。实验结果表明:随着光纤法珀微波导腔传感器腔内液体折射率的增加,传感器的干涉光谱发生蓝移,在1.3346~1.3764折射率范围内灵敏度可达525.81 nm/RIU,与仿真获得折射率灵敏度(555.14 nm/RIU)结果接近;该传感器还展现了优良的线性响应特性,线性拟合系数可达0.9948;相比于传统无微波导的光纤法珀微腔结构,干涉光谱峰值提升了8.2 dB,折射率灵敏度提升了近4倍。
光纤传感器 光纤法珀微波导腔 微波导 双光子聚合3D打印 折射率 
光学学报
2024, 44(2): 0206002
作者单位
摘要
华中科技大学 物理学院,武汉 430074
强场飞秒激光作用于原子时,原子中的电子除了发生多光子电离、隧穿电离等过程外,还有很大的概率处于高激发态。这种高激发态的原子在超强超短激光场中非常稳定,并且与强场中的其它许多现象密切相关,例如,中性粒子加速、多光子拉比振荡、近阈值谐波辐射等,因此近十几年来是强场超快物理领域的研究热点之一。在这些研究中,强激光场中里德堡原子的产生机制、激光对里德堡态的调控、里德堡态强场电离及稳定性等,是关注的主要问题。本文将概述强激光驱动的里德堡态的产生机制,包括多光子共振激发,受挫隧穿电离等。重点介绍强激光场驱动的里德堡态原子激发过程中的多种干涉现象。这些干涉现象提供了里德堡原子强场激发的动态过程信息。同时,还将介绍激发态原子在强激光场中的电离过程,特别是圆偏光驱动的里德堡原子电离的圆二色性。
里德堡态原子 强场激发 强场电离 电子波包干涉 圆二色性 Rydberg state atom Strong field excitation Strong field ionization Wavepacket interference Circular dichroism 
光子学报
2023, 52(7): 0732001
作者单位
摘要
1 中国科学院光学天文重点实验室(国家天文台),北京 100101
2 西安应用光学研究所,陕西 西安 710065
3 中国科学院地质与地球物理研究所 地球与行星物理重点实验室,北京 100029
4 中国科学院大学,北京 100049
为了使2.16 m望远镜具备线偏振测光观测能力,开展了偏振光度计研制。该系统采用双通道分时偏振成像方案,具有偏振定标单元、偏振测量单元,可实现偏振定标、偏振测量和多色测光。完成系统研制后,将其安装在2.16 m望远镜上开展实测,依照该偏振光度计偏振观测流程拍摄了一系列非偏振标准星、偏振标准星、流量标准星;按照偏振定标和偏振态解算数据处理方法,对获取图像进行数据处理。结果显示:该偏振光度计视场为4.63′×4.63′,像元比例尺为0.54 (″)/pixel,偏振度测量精度优于0.01,60 s曝光时间可以拍摄到V波段信噪比约为141的15.3等星。该偏振光度计使2.16 m望远镜具备V波段线偏振测光和快速多色测光观测能力。
成像偏振测量 偏振测光 线偏振测光 天文测光 imaging polarimetry photopolarimetry linear polarization photometry photometry 
红外与激光工程
2023, 52(7): 20220830
仝锐杰 1,2王煜 1邢斌 1赵勇 1,2,*
作者单位
摘要
1 东北大学信息科学与工程学院,辽宁 沈阳 110004
2 微纳米精密光学传感与测量技术河北省重点实验室,河北 秦皇岛 066004
为了实现对海水温度与盐度变化的同时监测,提出了一种基于光子晶体光纤(PCF)的表面等离子体共振(SPR)传感器。该传感器探头通过在两段多模光纤之间熔接一段PCF实现,并在PCF表面镀金膜用以激发SPR现象。该方案将光纤SPR传感探头与温敏材料聚二甲基硅氧烷相结合形成双重SPR效应,实现了海水的温度与盐度同时检测。实验结果表明:该传感器的最大温度灵敏度为-2.021 nm/℃,最大盐度灵敏度为0.418 nm/‰。该传感器体积小、制作简单、性能优异,适用于海水的多参数、分布式测量,在液态物质测量中有较好的应用前景。
光纤 表面等离子体共振 盐度 温度 
激光与光电子学进展
2023, 60(11): 1106026
殷琦寓 1,3蔡露 1,3,*李尚文 1,3赵勇 1,2,3,**
作者单位
摘要
1 东北大学信息科学与工程学院,辽宁 沈阳 110819
2 东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819
3 东北大学秦皇岛分校河北省微纳精密光学传感与检测技术重点实验室,河北 秦皇岛 066004
提出一种在纤式回音壁模式微球谐振腔,并对其温度和折射率传感特性进行研究。首先,分析了不同尺寸的微球腔与光纤结构耦合时的相位匹配情况,以锥形光纤为探针来拾取并移动钛酸钡微球,将其嵌入空心光纤,形成在纤式谐振腔结构,从而在微球中激发回音壁模式,并与空心光纤端面的反射光相互作用,产生法诺共振。实验结果表明,激发的法诺共振峰曲线的斜率高达-99.3 dB/nm。另外,通过实验证明了此结构对温度和折射率均具有较好的传感特性,灵敏度分别为26.8 pm/℃和-244.97 dB/RIU。该谐振腔性能稳定、结构紧凑、加工简单,在纤式的反射结构使其有望在复杂的传感环境中发挥作用。
光纤光学 光纤传感器 在纤式 回音壁模式 微球腔 
光学学报
2023, 43(1): 0106002
作者单位
摘要
1 福建省先进高场超导材料与工程协同创新中心, 福建 福州 350117
3 西南交通大学超导与新能源研究开发中心, 四川 成都 610031
激光诱导击穿光谱(LIBS)以激光诱导微等离子体的原子发射为技术特征, 在科研与工业领域正得到重视与蓬勃发展。 作为环境气体的氩气对等离子体演化过程中粒子的碰撞过程有重要影响, 决定着LIBS技术分析性能的发挥。 利用光谱诊断技术深入研究LIBS技术条件下氩气的光谱特征, 对于提升LIBS技术及其应用水平具有重要的意义。 利用中阶梯光栅光谱仪记录时间序列光谱信息研究了瞬态Ar等离子体碰撞和衰减过程, 包括等离子体演化过程中的辐射机制和等离子体电子数密度及温度的时间演化特征。 结果表明, 在激光与氩气相互作用的初始阶段, 光谱主要由连续辐射组成, 在0.6 μs后, 光谱开始主要由氩原子、 离子的离散跃迁辐射谱线组成。 氩原子线和离子线的演化周期不同, 在0~1.0 μs延迟时间内离子线占主导, 在1.0~30 μs原子线占主导。 利用Stark展宽, Saha-Boltzmann曲线方程对60, 80和100 mJ脉冲激光能量激发下的等离子体的电子数密度和温度进行了计算, 等离子体电子数密度在0.2~2.0 μs延迟时间内快速衰减, 之后在较长的延迟时间内缓慢下降, 大约在4.0 μs达到同一个数量级; 等离子体温度(80 mJ)从初始0.2 μs时的18 000 K迅速下降到13 000 K(2.0 μs), 在5.0 μs后缓慢下降到12 000 K。 为进一步检验和优化激光脉冲用于氩气的分析性能, 对氩的不同特征谱线信噪比随时间演化的特征进行了研究, 结果表明, 氩原子线在2.0~6.0 μs的延迟窗口具有较高的信噪比, 氩离子线则在0.1~1.0 μs延迟窗口具有较高的信噪比。
激光诱导击穿光谱 氩气 等离子体 时序特征 时间分辨 Laser-induced breakdown spectroscopy Argon Plasma Timing characteristics Time resolved 
光谱学与光谱分析
2022, 42(4): 1049
陈毓锴 1,2蒲涛 2李云坤 2,3赵勇 1[ ... ]李晋 2
作者单位
摘要
1 中国人民解放军61623部队, 北京 100840
2 中国人民解放军陆军工程大学 通信工程学院, 南京 210007
3 中国人民解放军31106部队, 南京 210016
针对光网络安全防护问题, 从物理层安全性评估、实验验证2个层面深入研究量子噪声随机加密(QNRC)物理层抗截获传输技术。首先, 介绍了国内外QNRC的发展现状, 凝练了一套物理层安全性评估通用方法。然后, 提出一种基于光域解密的强度移位键控-量子噪声随机加密(ISK-QNRC)实验方案, 针对该方案中高分辨率、高采样速率的数/模转换器制造工艺问题, 提出一种并联ISK-QNRC方案并进行了验证, 结果表明该方案信息传输安全、有效。最后, 分析了QNRC技术的典型应用场景及发展趋势。
光网络安全防护 量子噪声随机加密 安全性评估方法 并联强度调制 应用场景 optical network security protection, quantum-noise 
光通信技术
2022, 46(6): 61
作者单位
摘要
1 燕山大学电气工程学院, 河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
2 燕山大学信息科学与工程学院, 河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
肺炎支原体是造成人类呼吸系统疾病的主要原因。 临床中, 患者感染不同肺炎支原体症状极为相似, 很难根据症状判别肺炎支原体类型并对症给药。 因此, 准确判别肺炎支原体菌株类型对于发病机理和疾病流行病学研究以及临床精准治疗具有重要意义。 拉曼光谱具有快速、 高效、 无污染等优点, 在生物医学领域逐渐得到越来越多研究者们的关注。 一维卷积神经网络(1D-CNN)是一类包含卷积运算且具有深度结构的前反馈网络, 在语音信号和振动信号分析等方面取得成功应用。 提出一维卷积神经网络与拉曼光谱技术结合, 针对肺炎支原体主要基因型M129型和FH型样本的拉曼光谱数据集, 实现肺炎支原体菌株分类。 利用光谱数据增强方法扩充原光谱数据集作为模型输入, 训练一维卷积神经网络模型, 解决由于小样本导致卷积神经网络数据饥渴问题; 为了得到最好的肺炎支原体分类效果并加速学习过程, 优化模型结构并确定最佳模型参数; 拉曼光谱测量时常混有高斯噪声、 泊松噪声和乘性噪声, 为优化模型抗噪能力, 将原光谱分别叠加高斯噪声、 泊松噪声和乘性噪声, 训练一维卷积神经网络模型并和LDA, KNN和SVM等传统算法进行比较。 实验结果表明基于1D-CNN方法, 对于叠加高斯噪声的光谱数据所建模型分类正确率为98.0%, 叠加泊松噪声的光谱数据分类正确率为97.0%, 叠加乘性噪声的光谱数据分类正确率为97.0%, 分类正确率远高于基于LDA, KNN和SVM等传统算法所建模型分类正确率; 同时构造叠加5, 15, 25, 35, 45和55 dBW不同强度噪声的光谱数据集, 当噪声达到55 dBW时, 1D-CNN模型仍能取得92.5%的分类正确率。 因此, 一维卷积神经网络结合拉曼光谱技术应用于肺炎支原体菌株类型分类是可行的, 具有抗噪声能力强和分类正确率高的优点, 该研究为肺炎支原体肺炎快速诊断提供新思路。
肺炎支原体 拉曼光谱 定性分类 一维卷积神经网络 Mycoplasma pneumoniae Raman spectroscopy Qualitative classification One dimensional convolution neural network 
光谱学与光谱分析
2022, 42(5): 1439
作者单位
摘要
1 上海工程技术大学机械与汽车工程学院,上海 201620
2 山西中电科新能源技术有限公司,山西 太原 030024
3 上海司南卫星导航技术股份有限公司,上海 201801
针对现有多目标跟踪算法精度不高的问题,提出了一种融合YOLO-V4与改进SiameseRPN的多目标跟踪算法。首先通过YOLO-V4网络自动获取跟踪目标,制作模板后输入SiameseRPN跟踪网络;然后在模板分支中采用背景自适应策略初始化模板,并且融合残差连接构建Siamese网络;最后通过匈牙利算法对YOLO-V4的检测结果和改进SiameseRPN的跟踪结果进行数据关联,实现多目标跟踪。实验结果表明,与其他算法相比,所提算法具有较好的跟踪性能,在目标尺度变化、外观变化、部分遮挡等情况下能够实现稳定跟踪。
机器视觉 多目标跟踪 SiameseRPN算法 背景自适应 数据关联 
激光与光电子学进展
2022, 59(22): 2215010
作者单位
摘要
1 西南交通大学超导与新能源研究开发中心, 成都 610031
2 西南交通大学物理科学与技术学院, 成都 610031
作为一种铁基超导薄膜, Fe(Se,Te)薄膜具有晶体结构简单、所包含的元素较少、易于合成的特点, 不仅有利于超导机理研究而且有着潜在的技术应用价值。本文通过磁控溅射在温度为320 ℃的CaF2单晶衬底上制备了Fe(Se,Te)薄膜, 并在氩气氛围下进行了退火处理。研究了退火时间对Fe(Se,Te)薄膜的晶体结构、微观形貌、成分组成以及电输运特性的影响。结果表明: Fe(Se,Te)薄膜的结晶性较好, 退火有助于消除薄膜样品中的FeSe相, 薄膜的晶格常数c对退火不敏感, 退火后薄膜晶粒尺寸变大; Fe(Se,Te)薄膜成分与靶材的名义组分存在一定的偏差, 退火时间越长, Fe(Se,Te)薄膜表面的颗粒越密集; Fe(Se,Te)薄膜的电阻随温度升高而减小, 呈现出半导体特性, 退火3 h后电阻明显增大。
Fe(Se,Te)薄膜 磁控溅射 氩气退火 电输运特性 铁基超导薄膜 Fe(Se,Te) thin film magnetron sputtering argon annealing electrical transport characteristic iron-based superconducting thin film 
人工晶体学报
2022, 51(4): 660

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!