赵安迪 1,2,*陈全莉 1,2,3郑晓华 3李璇 1,2[ ... ]鲍珮瑾 1,2
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 湖北省珠宝工程技术研究中心, 湖北 武汉 430074
3 滇西应用技术大学珠宝学院, 云南 腾冲 679118
近几年市场上最新出现了一类“加瓷”绿松石, 与绿松石原矿极为相似, 这类“加瓷”绿松石是使用无机结合剂磷酸盐或硅酸盐作为添加物, 对绿松石进行充填处理从而达到提高绿松石瓷度的目的, 故以“加瓷”绿松石而得名。 这类“加瓷”绿松石与天然绿松石的外观极为相似, 目前对此类型绿松石的研究比较薄弱。 使用常规宝石学仪器、 红外光谱仪、 X射线荧光光谱仪、 紫外-可见分光光度计、 荧光光谱仪对经磷酸盐“加瓷”处理的绿松石的化学成分组成特征以及振动光谱特征进行了系统的研究和分析。 研究结果显示: 经磷酸盐“加瓷”处理的绿松石均为隐晶质结构, 表面多呈蜡状-玻璃光泽, 有黑色或白色团块状色斑, 分布有铁线, “加瓷”处理后绿松石的相对密度平均值(2.38)小于具有相似外观的天然绿松石(2.60); 荧光整体呈惰性, 但部分“加瓷”处理的绿松石在紫外荧光灯下会出现蓝白色荧光沿样品表面微裂隙分布的异常现象; 使用X射线荧光(XRF)光谱仪对样品的成分进行测试分析, 磷酸盐“加瓷”处理绿松石的主要化学成分偏离天然绿松石理论化学成分值, ω(Al2O3)在20.91%~39.45%之间, ω(P2O5)在42.32%~53.46%之间, ω(CuO)在6.54%~11.38%之间, ω(FeOT)在0.43%~22.2%之间, ω(SiO2)在0.28%~4.52%之间, ω(K2O)在0.05%~0.36%之间; 磷酸盐“加瓷”处理绿松石的磷铝比为1.47~2.10, 这一数值相比天然绿松石普遍较高; 磷酸盐“加瓷”处理绿松石红外吸收光谱主要显示为结晶水、 羟基水及磷酸根基团的振动光谱, 振动频率与天然绿松石红外光谱基本一致; 紫外-可见光谱表明磷酸盐“加瓷”处理绿松石的谱峰的位置相对于天然绿松石图谱稍有偏移但整体趋势一致; 三维荧光光谱仪检测结果荧光较微弱, 荧光中心强度变化范围较大。
绿松石 “加瓷”处理 宝石学特征 化学成分 谱学特征 Turquoise “Porcelain-added” treatment Gemological characteristics Chemical composition Spectral characteristics 
光谱学与光谱分析
2023, 43(4): 1192
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 滇西应用技术大学珠宝学院, 云南 大理 671000
随着哥伦比亚祖母绿矿的日益枯竭, 巴基斯坦祖母绿逐渐成为市场的主力军之一, 运用常规宝石学仪器、 红外光谱仪、 激光拉曼光谱仪、 紫外-可见-近红外光谱仪(UV-Vis-Nir)和激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)对巴基斯坦斯瓦特产区的祖母绿谱学特征进行了较系统的研究。 结果表明, 巴基斯坦斯瓦特祖母绿颜色整体呈深绿色-深蓝绿色, 折射率较高为1.589~1.615。 巴基斯坦斯瓦特产区的祖母绿中含有种类和数量较多的内含物, 其中三相内含物呈边界清晰平直的矩形且具有明显定向性, 与俄罗斯、 赞比亚和埃塞俄比亚产区祖母绿的三相内含物接近。 根据同一样品不同颜色的紫外-可见-近红外光谱和LA-ICP-MS的分析表明, 在颜色较深的区域, 紫外-可见-近红外光谱显示相对较强的427, 608, 637和679 nm(o光)Cr的R线吸收以及在o光下370 nm Fe的吸收, 同时此区域内Cr和Fe含量相对较高, 因此祖母绿色带是由含量不同的Cr和Fe所致。 巴基斯坦斯瓦特祖母绿是由Cr致色, V对颜色有一定贡献且Cr/V极高。 根据LA-ICP-MS结合红外光谱可知, 巴基斯坦斯瓦特祖母绿属于富碱祖母绿, 在红外光谱的指纹区显示了与一般祖母绿相同的振动吸收峰, 在中红外区4 000~2 000 cm-1, 低强度3 518和3 700 cm-1为Ⅰ型水不对称伸缩振动, 其他的水谱带饱和; 中等强度的3 232 cm-1为[Fe2(OH)4]2+多聚合离子吸收谱带; 在8 000~5 000 cm-1近红外光谱区, 在垂直于c轴的方向上, 5 264 cm-1为Ⅰ/Ⅱ型水ν3+ν2合频吸收带, 中等7 097 cm-1为Ⅱ型水倍频振动峰、 弱的7 187和6 842 cm-1为Ⅰ型水倍频振动峰; 在平行c轴方向上, 5 272 cm-1为Ⅰ/Ⅱ型水ν3+ν2合频吸收带, 7 073 cm-1为Ⅰ型水的合频振动峰, 7 185 cm-1为Ⅱ型水的倍频振动峰。 总之, 巴基斯坦斯瓦特山谷的祖母绿的主要致色离子为Cr3+和Fe3+, 碱金属离子含量偏高, 属于Ⅱ型水为主的祖母绿类型。
祖母绿 紫外-可见-近红外光谱 红外光谱 颜色成因 Emerald UV-Vis-Nir spectrum IR spectrum Causes of color 
光谱学与光谱分析
2023, 43(1): 213
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 滇西应用技术大学珠宝学院, 云南 大理 671000
3 国检珠宝培训中心, 北京 102627
建立基于激光诱导击穿光谱仪技术获取的半定量青白色软玉的微量元素含量的人工神经网络模型, 以促进人工神经网络技术在宝石产地溯源方面的应用。 以我国新疆、 广西、 江苏、 青海, 以及韩国和俄罗斯六个产地的青白色软玉为样品, 利用激光诱导击穿光谱仪在颜色均匀干净的部分获取元素含量数据。 使用数据筛选原则对数据进行了筛选和Al的归一化处理之后, 以因子分析和线性回归分析讨论了数据间的共线性, 在数据间不存在明显多重共线性的情况下建立了三层人工神经网络的判别模型。 结果表明, 所选取的每个变量的VIF值小于5, 数据间不存在明显的多重共线性, 因子分析的KMO值小于0.6, 表明变量间无明显关系。 同时利用软玉t-SNE图对数据进行降维和可视化处理, t-SNE图显示大部分数据点都重叠在一起, 表明对此数据进行简单聚类和相关分析是无法区分产地的, 因此选择人工神经网络的方法对六个产地的数据进行产地判别分析。 经人工神经网络模型迭代判别之后, 模型对我国新疆、 广西、 江苏、 青海, 以及韩国和俄罗斯六个产地的青白色软玉判别的精度达到0.933, 其中韩国软玉的数据判别结果精度最高, 达到0.995, 误差为0.028, 青海软玉的数据判别结果最低为0.803, 误差为0.090。 综上所述, 激光诱导击穿光谱结合人工神经网络的方法在宝石产地溯源方面的应用是具有很大潜力的。
激光诱导击穿光谱仪 人工神经网络 软玉 产地溯源 Laser-induced breakdown spectroscopy Artificial neural network model Nephrite Identification of the origin 
光谱学与光谱分析
2023, 43(1): 25
作者单位
摘要
中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
采用常规宝石学测试方法, 结合能量色散型X射线荧光光谱仪、 激光拉曼光谱仪、 傅里叶变换红外光谱仪、 荧光光谱仪等测试分析方法, 对天然及充填处理摩根石的谱学特征进行了对比研究, 旨在研究充填处理摩根石的宝石学、 谱学特征及探寻有效的无损鉴别充填处理摩根石的方法。 结果表明, 充填处理摩根石的折射率在1.57左右, 略低于天然摩根石折射率; 充填处理摩根石相对密度为2.71~2.76。 天然摩根石在长波和短波紫外荧光下都不发光, 充填处理摩根石在长波和短波紫外荧光下均显示弱至中等的白色荧光, 个别样品的荧光沿裂隙分布; 放大观察后, 部分充填处理摩根石表面可见细网纹状开放裂隙, 且在裂隙中可见充胶痕迹。 能量色散型X射线荧光光谱仪测试显示天然摩根石及充填处理摩根石中均含有Si, Al, Rb和Cs等元素。 天然摩根石与充填处理摩根石的激光拉曼光谱无明显差异, 激光拉曼光谱仪对于区分天然摩根石与充填处理摩根石效果不明显。 天然摩根石的红外光谱在1 300~400 cm-1间, 主要为Si—O—Si环、 Be—O和Al—O的基团振动; 在4 000~2 000 cm-1官能团区有CO2产生的2 359 cm-1吸收和NaH产生的3 110和3 168 cm-1特征吸收峰。 充填处理摩根石除了摩根石本身基团振动吸收外, 在2 870, 2 930和2 965 cm-1普遍存在(—CH3—)、 (—CH2—)吸收; 在3 035和3 057 cm-1存在苯环引起的吸收。 三维荧光光谱图分析显示天然摩根石荧光非常弱, 无特征荧光中心, 相对强度在500以内; 充填处理摩根石的荧光中心主要为410 nm左右的单荧光中心和440和465 nm的双荧光中心, 相对强度在2 000以上。 充填处理摩根石的荧光中心相对强度明显高于天然摩根石, 归因于充填处理过程中添加的有机胶中的芳香族化合物所致。 红外吸收光谱及荧光光谱测试技术可作为区分天然摩根石和充填处理摩根石的快捷有效的无损检测手段。
摩根石 充填处理 红外光谱 三维荧光光谱 Morganite Filling treatment Infrared spectrum Three dimensional fluorescence spectrum 
光谱学与光谱分析
2022, 42(2): 575

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!