作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074滇西应用技术大学珠宝学院, 云南 腾冲 679118
3 滇西应用技术大学珠宝学院, 云南 腾冲 679118
内蒙古每年可开采多达100 t黄色至无色的长石, 且透明度良好、 分布集中, 加以处理以顺应市场需求, 固阳长石可作为极具发展前景的宝石资源。 采用激光拉曼光谱、 X射线荧光光谱、 傅里叶变换红外光谱、 电子探针一系列测试技术, 以及常规宝石学测试方法对内蒙古固阳县长石的基本宝石学特征、 化学组成成分及振动光谱特征等进行了系统的研究。 结果表明, 该产地长石原石样品的晶形大多是成砾石状, 折射率为1.555~1.570, 双折射率为0.008~0.010, 密度在2.65~2.68 g·cm-3, 样品的紫外荧光特征显示, 在长波(365 nm)和短波(254 nm)下均为惰性。 X射线荧光光谱仪分析表明, 所有样品中均含有一定量的Al、 Si、 Ca, 以及少量的Ti、 Fe、 Mn、 Mg和Sr。 根据电子探针测试结果计算长石的化学分子式及端元组分比例可知, 该类样品属于中长石。 长石的红外吸收谱峰主要位于1 200~400 cm-1之间。 其中从钠长石到钙长石, 随长石牌号递增, 在红外吸收光谱中则表现为: 590和650 cm-1的吸收峰均向低波数范围偏移, 分别偏移至575 cm-1±和624 cm-1±处, 本文研究的固阳中长石, 两处的吸收峰分别位于578和632 cm-1处, 符合长石序列红外光谱变化的特征, 属典型中长石红外吸收光谱特征。 该类长石的拉曼谱峰主要由102、 186、 290、 489、 516、 572和800 cm-1七个主要的拉曼谱峰组成。 其中450 cm-1以下的102、 186和290 cm-1谱峰是由金属阳离子和氧([M—O])之间的振动, 290和490 cm-1两处拉曼峰的分裂程度可以指示硅酸盐矿物中Al/Si的有序度。 489、 516和572 cm-1处拉曼峰属O—Si(Al)—O的弯曲振动频谱和Si—Obr—Si(Al)的反对称伸缩。 与其他产地长石对比分析可作为鉴别依据之一。 基于以上分析, 进行了此种长石的组成成分与主要结构的分析和探讨。
固阳长石 电子探针 红外光谱 拉曼光谱 Guyang feldspar Electron probe Infrared spectrum Raman spectroscopy 
光谱学与光谱分析
2023, 43(5): 1622
赵安迪 1,2,*陈全莉 1,2,3郑晓华 3李璇 1,2[ ... ]鲍珮瑾 1,2
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 湖北省珠宝工程技术研究中心, 湖北 武汉 430074
3 滇西应用技术大学珠宝学院, 云南 腾冲 679118
近几年市场上最新出现了一类“加瓷”绿松石, 与绿松石原矿极为相似, 这类“加瓷”绿松石是使用无机结合剂磷酸盐或硅酸盐作为添加物, 对绿松石进行充填处理从而达到提高绿松石瓷度的目的, 故以“加瓷”绿松石而得名。 这类“加瓷”绿松石与天然绿松石的外观极为相似, 目前对此类型绿松石的研究比较薄弱。 使用常规宝石学仪器、 红外光谱仪、 X射线荧光光谱仪、 紫外-可见分光光度计、 荧光光谱仪对经磷酸盐“加瓷”处理的绿松石的化学成分组成特征以及振动光谱特征进行了系统的研究和分析。 研究结果显示: 经磷酸盐“加瓷”处理的绿松石均为隐晶质结构, 表面多呈蜡状-玻璃光泽, 有黑色或白色团块状色斑, 分布有铁线, “加瓷”处理后绿松石的相对密度平均值(2.38)小于具有相似外观的天然绿松石(2.60); 荧光整体呈惰性, 但部分“加瓷”处理的绿松石在紫外荧光灯下会出现蓝白色荧光沿样品表面微裂隙分布的异常现象; 使用X射线荧光(XRF)光谱仪对样品的成分进行测试分析, 磷酸盐“加瓷”处理绿松石的主要化学成分偏离天然绿松石理论化学成分值, ω(Al2O3)在20.91%~39.45%之间, ω(P2O5)在42.32%~53.46%之间, ω(CuO)在6.54%~11.38%之间, ω(FeOT)在0.43%~22.2%之间, ω(SiO2)在0.28%~4.52%之间, ω(K2O)在0.05%~0.36%之间; 磷酸盐“加瓷”处理绿松石的磷铝比为1.47~2.10, 这一数值相比天然绿松石普遍较高; 磷酸盐“加瓷”处理绿松石红外吸收光谱主要显示为结晶水、 羟基水及磷酸根基团的振动光谱, 振动频率与天然绿松石红外光谱基本一致; 紫外-可见光谱表明磷酸盐“加瓷”处理绿松石的谱峰的位置相对于天然绿松石图谱稍有偏移但整体趋势一致; 三维荧光光谱仪检测结果荧光较微弱, 荧光中心强度变化范围较大。
绿松石 “加瓷”处理 宝石学特征 化学成分 谱学特征 Turquoise “Porcelain-added” treatment Gemological characteristics Chemical composition Spectral characteristics 
光谱学与光谱分析
2023, 43(4): 1192
作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 滇西应用技术大学珠宝学院, 云南 腾冲 679100
琥珀是一种天然有机宝石, 普遍具有荧光现象。 利用三维荧光光谱分析技术, 以缅甸琥珀为研究对象, 探讨了不同品种缅甸琥珀的荧光峰分布特征, 并初步判断了血珀荧光峰红移的原因。 结果表明, 在长波紫外光照下呈强蓝白色荧光的缅甸金珀、 棕珀, 三维荧光光谱中均含有一个荧光峰, 荧光峰范围约在λex350~400 nm/λex400~450 nm, 荧光主峰位于λex360 nm/λem425 nm, 荧光强度大。 在长波紫外光照下呈弱土黄色荧光的缅甸血珀, 三维荧光光谱中荧光峰范围约在λex420~520 nm/λem500~580 nm, 荧光峰分散呈多个小峰分布, 荧光强度小。 在氧化条件下加热金珀样品得到烤色“血珀”并对比加热前后的三维荧光光谱特征, 发现烤色“血珀”的荧光峰较加热前红移, 荧光峰范围由λex350~400 nm/λex400~450 nm红移至λem480~530 nm/λem 520~570 nm, 荧光强度极小, 与天然血珀的荧光特征一致。 结合红外吸收光谱测试, 氧化作用使血珀及烤色“血珀”分子结构中含氧基团羰基CO浓度升高, 羰基CO作为强助色基团, 浓度升高与吸收强度增加使琥珀产生红色外观; 同时作为得电子取代基, 羰基CO会取代分子结构中的H原子与具有未键合的杂原子相连, 产生n→π*1跃迁, 使血珀荧光强度减弱甚至消失, 同时荧光峰向长波长方向移动。 三维荧光光谱能够快速有效地表征缅甸琥珀的荧光现象, 为研究琥珀荧光特征与分子结构提供新依据。
三维荧光光谱 缅甸琥珀 荧光特征 Three-dimensional fluorescence spectra Burmese amber Fluorescence characteristics 
光谱学与光谱分析
2020, 40(5): 1473
作者单位
摘要
1 中国地质大学珠宝学院, 湖北 武汉 430074
2 滇西应用技术大学珠宝学院, 云南 腾冲 679100
以市场上铅玻璃充填红宝石为研究对象, 对其充填量的特征进行了相关研究。 测试了其常规宝石学参数, 包括: 折射率、 偏光性、 紫外荧光、 可见光谱等。 同时利用微照相、 X射线荧光光谱仪、 红外光谱仪对其充填量特征进行深入研究。 样品的宝石学常规参数通过多次测试求其平均值得到最终结果。 经分析, 充填处理过的样品与天然红宝石的宝石学参数相吻合, 少数几颗在偏光测试中呈现出全亮, 这可能与充填物集中于台面分布有关。 X射线荧光光谱显示样品中铅的峰高而且峰形尖锐, 说明充填量多而明显。 同时利用显微放大观察了所有样品的充填量的内外部特征并进行了对比研究, 发现其充填内外部特征表现为充填裂隙、 凹坑、 气泡、 雾状结构的充填物、 蓝色闪光效应和充填空洞, 且充填量越多, 这些充填特征越明显。 通过对比台面以及底面充填裂隙的大小、 形态和数量; 内部充填气泡多少和大小形态; 暗域漫反射照明下黄色充填物的明显程度和分布面积; 蓝色闪光效益的明显程度可以来区分不同样品不同充填量的差别。 红外光谱测试结果显示3 424, 2 920, 2 851以及2 600 cm-1处的吸收峰, 2 920cm-1为硬水铝矿的吸收峰, 2 851 cm-1为红宝石其他内含物的吸收峰。 3 424和2 600 cm-1为典型铅玻璃充填物的指示峰, 其中3 424 cm-1为充填物水分子的振动吸收峰, 2 600 cm-1为Si—OH的吸收峰。 研究发现若以2 600 cm-1充填物特征指示峰为例, 样品的充填量不同, 该峰的峰形强度以及峰高也不一样。 以2 600 cm-1充填物特征吸收峰为标准, 得出不同样品的此峰高值的柱状图, 因峰高值与充填量成正比关系, 所以此峰高图可以指示得出充填量的变化量。 通过图对比看出样品R-6较R-3峰高值较低, R-3峰高值较R-5低, R-5峰高值最高, 说明R-6充填量较R-3充填量较少, 而R-5充填量最多, 这与前面显微放大观察大部分结论相符合。 通过以上研究与分析, 可以得出铅玻璃充填物基本不影响红宝石本身的宝石学参数特性, 且其分布内外部充填特征基本上可以区别充填量的多少, 但对于充填都过于严重的红宝石却具有局限性。 红外光谱在一定程度上弥补了这个缺陷, 通过对充填物指示峰的峰高计算可以区分充填量之间的微小差别。 这也在一定程度上为铅玻璃充填红宝石的定量分级打下来基础。
红宝石 铅玻璃 充填处理 充填量特征 Ruby Lead glass Filling treatment Characteristics of fillings 
光谱学与光谱分析
2019, 39(4): 1274
作者单位
摘要
浙江工业大学机械工程学院, 浙江 杭州 310014
采用直流辉光放电辅助脉冲激光沉积(PLD)法,以不同的激光通量在单晶硅基底上沉积CNx薄膜。利用扫描电镜(SEM)、拉曼光谱、X射线衍射(XRD)谱、X射线光电子谱(XPS)、纳米压入仪和球盘式微型摩擦磨损试验仪对薄膜的成分、微观结构、表面形貌、力学及摩擦学性能进行了系统分析。结果表明:所有薄膜处于非晶状态。当激光通量从5.1 J/cm2提升至7.5 J/cm2时,薄膜的含氮原子数分数由27.7%上升至34.1%;膜中sp3C—N键和sp2C—N键的面积百分数上升,sp3C—C键的面积百分数降低, C原子sp3杂化程度增加,薄膜的石墨化程度下降;薄膜的硬度由3.7 GPa增加至5.3 GPa,磨损率从3.8×10-13 m3/(N·m)下降至7.9×10-14 m3/(N·m),摩擦系数从0.13上升至0.18。
薄膜 氮化碳 脉冲激光沉积 X射线光电子谱 摩擦与磨损 
中国激光
2013, 40(11): 1107002
作者单位
摘要
1 浙江工业大学机械工程学院, 浙江 杭州 310014
2 常州大学材料科学与工程学院, 江苏 常州 213164
采用脉冲激光沉积法(PLD)在单晶硅基底上制备了WSx固体润滑薄膜。利用X射线能谱仪(EDS)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)对薄膜的成分、形貌和微观结构进行了分析,采用球盘式磨损试验机在大气(相对湿度为50%~55%)环境下评价薄膜的摩擦学特性。结果表明:薄膜中S和W的原子数分数比(简称S/W比)在1.05~3.75之间可控,摩擦系数为0.1~0.2;S/W比高于2.0时薄膜成膜质量和摩擦系数显著恶化。正交试验法得出影响薄膜S/W比的因素主次顺序分别是气压、温度、靶基距和激光通量;最优工艺参数是温度150 ℃、靶基距45 mm、激光通量5 J/cm2、气压1 Pa,可获得结构致密、成分接近化学计量比的WSx薄膜。
薄膜 脉冲激光沉积 固体润滑 正交试验 
中国激光
2012, 39(4): 0407002
作者单位
摘要
1 浙江工业大学机械工程学院, 浙江 杭州 310014
2 常州大学材料科学与工程学院, 江苏 常州 213164
采用脉冲激光沉积法(PLD)在不同激光通量下烧蚀CNx靶,在单晶硅基底上沉积CNx薄膜。利用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线光电子谱仪(XPS)等对薄膜的形貌、化学成分和微观结构进行了表征。采用球盘式磨损试验机在大气(相对湿度48%~54%)环境下测试了薄膜的摩擦学特性。结果表明,递进式PLD技术可显著提高CNx薄膜的含氮量。当激光通量从5.0 J/cm2提高至10.0 J/cm2时,薄膜含氮原子数分数由23.8%上升至29.9%,膜中N-sp2C键的含量上升,N-sp3C键和sp3C-C键的含量下降,薄膜的磨损率从2.1×10-15 m3/(N·m)上升至9.0×10-15 m3/(N·m)。摩擦系数为0.15~0.23,激光通量5.0 J/cm2沉积的薄膜有最佳摩擦学性能。
薄膜 氮化碳 脉冲激光沉积 摩擦与磨损 X射线光电子谱 
中国激光
2012, 39(6): 0607001
作者单位
摘要
浙江工业大学机械制造及自动化教育部重点实验室, 浙江 杭州 310032
用化学镀技术在中碳钢基片上制备镍-磷-纳米氧化铝复合镀层,并用CO2激光在多种扫描速度及功率密度下对镀层进行热处理。采用能谱(EDS),扫描电子显微镜(SEM),X射线衍射(XRD)、划痕实验和球盘式摩擦磨损实验对镀层的成分、结构形貌、结合力和摩擦学性能等进行表征,并考察工艺参数对镀层结构和耐磨性能的影响。结果表明,激光热处理后镀层由非晶态变为晶态,析出Ni和Ni3P相,而Al2O3仍呈非晶态; 镀层硬度因相变硬化而显著提高,表面粗糙度增加和相结构的改变导致摩擦系数上升,镀层结合力小幅度下降,其主要磨损机制为磨粒磨损。在扫描速度1.5~3.0 m/min,激光功率密度5.0~8.3 kW/cm2范围内,镀层硬度高、耐磨性能优异,最低磨损率为1.21×10-5 mm3/(N·m)。
激光技术 镍磷合金 激光热处理 化学镀 氧化铝 
中国激光
2008, 35(4): 610

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!