作者单位
摘要
1 中国科学院理化技术研究所仿生材料与界面科学重点实验室,有机纳米光子学实验室,北京 100190
2 中国科学院大学,北京 101407
双光子聚合加工技术是基于双光子吸收效应的一种新型的微纳制造技术,已被广泛应用于微纳光子学、微机电系统、组织工程等领域。采用双光子聚合加工技术制备的3D水凝胶微结构形貌可控,而且具有高精度、适当的刚度以及良好的生物相容性等优势,可以更好地在体外模拟体内微环境,因而在生物医学领域展现出了巨大的应用潜力。本文简要介绍了双光子聚合加工技术的原理,综述了水溶性光引发剂的研究进展,着重介绍了双光子聚合加工技术制备水凝胶的研究现状及其在仿生学、生物医学等领域的应用。
材料 双光子聚合 水凝胶 生物相容性 微结构 细胞支架 组织工程 
中国激光
2023, 50(21): 2107401
郭敏 1,2刘享洋 1,2董贤子 1刘洁 1[ ... ]郑美玲 1,*
作者单位
摘要
1 中国科学院理化技术研究所仿生材料与界面科学重点实验室,北京 100190
2 中国科学院大学未来技术学院,北京 101407
生物材料的表面拓扑结构能够显著影响细胞的黏附、增殖、迁移和分化等行为。为有效模拟体内细胞微环境,利用飞秒激光无掩模光学投影光刻技术制备了一系列曲线型拓扑结构。结果表明:细胞在沟槽、折线和三种不同曲率的波浪形拓扑结构上严格按照拓扑结构形貌进行生长、迁移。当波浪形结构曲率过大时,细胞改变原有的迁移方向,产生沿弯曲方向的迁移行为。共聚焦荧光显微图像显示:细胞在折线结构和波浪线结构的拐角区域发生骨架重排,相较于线区域细胞圆度增加。据此提出了细胞在曲线型拓扑结构上的迁移机制。该研究揭示了细胞对曲线型拓扑结构的响应机制,将为体外植入材料的设计提供科学依据。
医用光学 飞秒激光 无掩模光学投影光刻 曲线型拓扑结构 细胞迁移 细胞骨架 
中国激光
2023, 50(15): 1507303
作者单位
摘要
1 暨南大学 光子技术研究院 广东省光纤传感与通信技术重点实验室,广东 广州 511443
2 中国科学院理化技术研究所 仿生智能界面科学中心 有机纳米光子学实验室,北京 100190
Overview: Femtosecond laser two-photon polymerization (TPP) micro-nanofabrication technology is a new type of three-dimensional lithography technology that integrates nonlinear optics, ultra-fast pulsed laser, microscopic imaging, ultra-high-precision positioning, three-dimensional (3D) graphics CAD modeling, and photochemical materials. It has the characteristics of simplicity, low cost, high resolution, true 3D, and so on. Different from the technical route of shortening the wavelength of the traditional lithography, this TPP technology breaks through the optical diffraction limit using the ultrafast laser in the near-infrared and the nonlinear optical effect of the interaction between the laser and the material. TPP can achieve true 3D fabrication of complex 3D structures. After the femtosecond pulse laser is tightly focused in space, photopolymerization is initiated by the two-photon absorption(TPA), which can limit the fabrication area in the center of the focus. The interaction time of the ultrashort pulse with the material is much lower than the thermal relaxation of the material, avoiding the photothermal effect. The lateral linewidth can be reduced to about 100 nm due to the strong threshold characteristics of the two-photon absorption process. Thus, TPP is an ideal fabrication method in the field of 3D micro-nanostructure. Since 2001, Kawata’s team has used a near-infrared femtosecond laser with a wavelength of 780 nm to fabricate a "nanobull" with the size of red blood cells. It fully demonstrated the advantages of TPP in the preparation of three-dimensional micro-nano structures. At the same time, a polymer nanodot with a size of 120 nm was fabricated, which was only 1/7 of the laser wavelength, breaking the optical diffraction limit in this study. Since then, scientists from various countries have improved the line width, resolution, and other parameters of 3D structure by continuously improving the materials, structure, processing technology and light field control, and other aspects. At the same time, with the continuous development and improvement of the 3D nanostructure fabrication technology, the advantages of TPP technology are also reflected in some application fields, such as micro-optical devices, integrated optical devices, micro-electromechanical systems, and biomedical devices. This paper will systematically introduce the femtosecond laser TPP micro-nanofabrication technology, including the fabricating principle, the development of fabricating methods, and its research overview in many application fields. Finally, its existing problems and future development and application prospects are discussed.
飞秒激光 双光子聚合 光学衍射极限 加工分辨力 加工效率 femtosecond laser two-photon polymerization optical diffraction limit resolution efficiency 
光电工程
2023, 50(3): 220048
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心,北京 100190
2 中国科学院大学未来技术学院,北京 101407

光刻技术在前沿科学与国计民生等领域发挥着重要作用。随着曝光光源、数字微镜器件(DMD)、投影镜头等光学元件的升级及计算机控制技术的飞速发展,基于DMD的无掩模光刻技术有可能在不久的将来与目前成熟的有掩模光刻技术齐头并进,并在特定应用领域中不可或缺。详细介绍了基于DMD的面投影光刻的曝光原理、系统组成和发展进程,重点介绍了提高面投影光刻分辨率的方法,以及突破光学衍射极限制备超细微结构的相关工作。同时阐述了基于DMD的面投影无掩模曝光技术在制备光子学器件、生物学支架、仿生结构等器件中的独特优势,特别是引入超快激光后其在新型加工领域所展现出的应用潜力。

光刻 数字微镜器件 分辨率 超快激光 投影曝光 
激光与光电子学进展
2022, 59(9): 0922030
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心有机纳米光子学实验室,北京 100190
2 中国科学院大学未来技术学院,北京 101407
为探索不同尺寸的水凝胶微图案对细胞的诱导调控作用,本文采用飞秒激光无掩模投影光刻技术,将水凝胶前驱体溶液制备成所设计的图案,同时结合大面积拼接,获得了具有大面积、不同尺寸的多边形和多角星微结构。详细研究了微结构的最佳加工条件及其浸润性。带有微结构的基底与成纤维细胞共培养的实验结果表明,微结构的空间限位作用会改变细胞形貌,从而能够对细胞的生长行为进行有效地调控。尤其在小尺寸的多边形和多角星微结构上,细胞核会落入微结构的中心陷窝,细胞骨架则不断铺展分布,并逐渐与微结构形貌趋于一致。该研究证实了微结构图案单元尺寸对诱导细胞行为功能至关重要,将为利用生物相容性水凝胶微结构进行体外细胞研究提供新技术与新方法。

无掩模投影光刻 水凝胶 微图案 细胞行为 maskless optical projection lithography hydrogel micropattern cell behavior 
光电工程
2022, 49(2): 210336
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心有机纳米光子学实验室, 北京 100190
2 中国科学院大学未来技术学院, 北京 101407
对双光子引发剂的设计合成和飞秒激光双光子聚合技术的基本原理进行了简单介绍。着重介绍了用于水凝胶双光子聚合的引发剂的研究进展,主要包括通过扩大共轭链长度、引入强供/吸电子基团、加入共引发体系等来增大双光子吸收截面,引入自由基淬灭基团以降低荧光量子产率,增加引发剂的水溶性来降低微结构细胞毒性等方面。这些研究为生物相容性三维水凝胶微纳结构的制备及应用提供了科学基础,是更好地模拟体内细胞生长微环境的必要条件。接着,介绍双光子聚合制备的水凝胶微纳结构及其在组织工程领域中的应用。最后,对生物相容性水凝胶微结构在应用中存在的问题与未来发展趋势进行总结和展望。
材料 双光子引发剂 水凝胶 双光子聚合 微结构 生物相容性 组织工程 
中国激光
2021, 48(2): 0202007
王荣荣 1,3张维彩 1,3金峰 1董贤子 1[ ... ]郑美玲 1,*
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心, 北京 100190
2 清华大学机械与工程学院, 北京 100084
3 中国科学院大学未来技术学院, 北京 101407
为直接制备小尺度且具有可控形貌的导电聚合物微结构,利用一种基于飞秒激光的双光子聚合法,实现了聚苯胺在基底上任意位置处微纳米尺寸线条的精准可控制备。以苯胺为单体、硝酸为氧化剂,通过调控苯胺与硝酸的浓度,可以制备出具有不同形貌的聚苯胺微纳米线。不溶于水的苯胺高聚物在水相界面处合成,苯胺与硝酸的浓度及激光功率会影响水溶性苯胺低聚物的分布,进而影响聚苯胺微纳米线的形貌。当苯胺与硝酸浓度分别为0.69mol·L -1和0.60mol·L -1时,可制备出具有致密光滑形态、电导率为5.79×10 -6 S·cm -1的聚苯胺微纳米线。本研究为导电聚合物的制备及其在传感器、微型探测器等微纳米器件中的广泛应用提供了新思路。
激光光学 微纳结构 双光子聚合 导电聚合物 聚苯胺 
中国激光
2021, 48(2): 0202006
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心, 北京 100190
2 中国科学院大学, 北京 101407
采用数字微镜器件(DMD)无掩模光刻技术,以飞秒激光为光源,结合大面积拼接的方法快速制备了具有较高分辨率和毫米尺寸的大面积微纳结构。提出以单子场投影线扫描的方式进一步改善由于光场能量分布不均匀引起的结构边缘粗糙的问题,极大地降低了线条的边缘粗糙度,有效地控制了结构的精度。本研究以半导体领域常用的正性光刻胶为主要研究对象,实现了面积为7.4 mm 2的1 μm等间距线阵列和面积为38.7 mm 2的10 μm等间距线阵列结构的快速制备。本研究为大面积微纳结构制备提供了一种新方法,所制备结构可应用于气液流动、药物输运及晶体生长等领域。
激光光学 微纳结构 正胶 大面积 数字微镜器件无掩模光刻 边缘粗糙度 
激光与光电子学进展
2020, 57(11): 111421
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心, 北京 100190
2 中国科学院大学未来技术学院, 北京 100049
3 中国科学院重庆绿色智能技术研究院, 重庆 401122
研究了一种基于数字微镜器件 (DMD)的数字掩模投影光刻 (DMPL)技术,以400 nm飞秒激光作为光源, 结合高缩放比投影系统,来缩小光刻胶与光子束的反应区域,通过调控不同DMD像素投影光场强度分布,将投影光刻的线宽分辨率推进至亚微米 尺度,实现了具有跨尺度加工能力(单次曝光面积在百微米以上,曝光精度在百纳米)的DMPL技术,同时详细对比分析了DMPL 中存在的几何和 物理光学模型,阐明了像素个数与加工结构尺寸的关系,并进一步基于物理光学模型分析了DMPL中极限分辨率的关键科学问题。
激光技术 仪器数字掩模投影光刻 数字微镜器件 跨尺度 飞秒激光 分辨率 laser technology instrument digital-mask projective lithography digital micromirror device cross-scale femtosecond laser resolution 
量子电子学报
2019, 36(3): 354
林乐 1,2,*郑美玲 1董贤子 1金峰 1[ ... ]段宣明 1,3
作者单位
摘要
1 中国科学院理化技术研究所, 北京 100190
2 中国科学院大学, 北京 100190
3 中国科学院重庆绿色智能技术研究院, 重庆 400714
研究了径向偏振型飞秒脉冲激光并将其引入基于双光子吸收理论的微纳加工系统,得到了 更高纵向分辨率、更低长径比的二维微纳尺度聚合物结构。对聚焦光场内光强分布的理论模拟表 明:径向偏振型飞秒脉冲激光在提高纵向分辨率的同时会在一定程度上降低聚合物结构的横向分 辨率,使聚合物结构的长径比降低。用扫描电子显微镜表征聚合物结构得到的结果与理论模拟 结果具有良好的一致性。径向偏振型飞秒脉冲激光提高了微纳尺度聚合物结构的纵向 分辨率,在激光光刻领域有良好的应用前景。
非线性光学 纵向分辨率 双光子加工 径向偏振 微纳聚合物结构 nonlinear optics longitudinal resolution two-photon fabrication radial polarization micro/nano polymer structure 
量子电子学报
2017, 34(1): 76

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!