作者单位
摘要
1 中国科学院理化技术研究所有机纳米光子学实验室,北京 100190
2 中国科学院大学,北京 100049
三维(3D)无机微纳结构在光子学、量子信息、航空航天、能源等领域发挥着重要作用。利用传统制备方法获得的无机微结构通常分辨率较低和形貌不可控。因此,3D无机微纳结构的精确可控制备成为亟待解决的难题。激光加工具有高精度、形貌可控等优势,能够实现真3D、高分辨、多尺度复杂3D微纳结构的制备,解决3D无机微纳结构的精确可控制备难题。本文综述了激光加工制备无机微纳结构的研究进展,首先讨论了连续激光和超快脉冲激光加工方式,重点针对飞秒激光加工技术,阐述了基于纯无机材料体系、有机-无机杂化体系,以及聚合物模板法等制备3D无机微纳结构的方法。随后,总结了近年来激光加工3D无机微纳结构在光学器件、量子芯片、信息存储与防伪、航空航天以及仿生结构等领域的应用。最后,展望了激光加工3D无机微纳结构的未来发展趋势。
三维无机微纳结构 激光加工 飞秒激光 光与物质相互作用 微型器件 
激光与光电子学进展
2024, 61(19): 1900001
作者单位
摘要
南京航空航天大学能源与动力学院,江苏 南京 210016
以中高层大气背景的红外辐射特性和红外成像为研究目的,建立中高层大气背景探测模型和红外成像模型,分析中光谱分辨率大气辐射传输模式(MODTRAN)在红外波段的适用范围,利用战略高空辐亮度代码(SHARC)仿真分析3~5 μm波段不同观测参数下的中高层大气背景红外辐射特性,并建立相关辐射特性数据库,完成中高层大气背景红外辐射场景成像仿真。结果表明:3~5 μm和8~12 μm波段MODTRAN分别在切点高度50 km和70 km以下具有较好的计算精度;中高层大气背景辐亮度随着切点高度和太阳天顶角的增大而减小,随着观测天顶角的增大而增大;短路径和长路径的辐射特性分别由路径长度和处于低层大气的路径大气参数占主导影响;白天和夜晚的辐亮度分别在36 km和34 km为最大值,在75 km和85 km处为极大值。研究结果可为中高层大气背景红外探测提供理论支持。
中高层大气 红外辐射 临边背景 红外成像 数据库 
激光与光电子学进展
2024, 61(8): 0828005
郭敏 1,2刘享洋 1,2董贤子 1刘洁 1[ ... ]郑美玲 1,*
作者单位
摘要
1 中国科学院理化技术研究所仿生材料与界面科学重点实验室,北京 100190
2 中国科学院大学未来技术学院,北京 101407
生物材料的表面拓扑结构能够显著影响细胞的黏附、增殖、迁移和分化等行为。为有效模拟体内细胞微环境,利用飞秒激光无掩模光学投影光刻技术制备了一系列曲线型拓扑结构。结果表明:细胞在沟槽、折线和三种不同曲率的波浪形拓扑结构上严格按照拓扑结构形貌进行生长、迁移。当波浪形结构曲率过大时,细胞改变原有的迁移方向,产生沿弯曲方向的迁移行为。共聚焦荧光显微图像显示:细胞在折线结构和波浪线结构的拐角区域发生骨架重排,相较于线区域细胞圆度增加。据此提出了细胞在曲线型拓扑结构上的迁移机制。该研究揭示了细胞对曲线型拓扑结构的响应机制,将为体外植入材料的设计提供科学依据。
医用光学 飞秒激光 无掩模光学投影光刻 曲线型拓扑结构 细胞迁移 细胞骨架 
中国激光
2023, 50(15): 1507303
作者单位
摘要
1 暨南大学 光子技术研究院 广东省光纤传感与通信技术重点实验室,广东 广州 511443
2 中国科学院理化技术研究所 仿生智能界面科学中心 有机纳米光子学实验室,北京 100190
Overview: Femtosecond laser two-photon polymerization (TPP) micro-nanofabrication technology is a new type of three-dimensional lithography technology that integrates nonlinear optics, ultra-fast pulsed laser, microscopic imaging, ultra-high-precision positioning, three-dimensional (3D) graphics CAD modeling, and photochemical materials. It has the characteristics of simplicity, low cost, high resolution, true 3D, and so on. Different from the technical route of shortening the wavelength of the traditional lithography, this TPP technology breaks through the optical diffraction limit using the ultrafast laser in the near-infrared and the nonlinear optical effect of the interaction between the laser and the material. TPP can achieve true 3D fabrication of complex 3D structures. After the femtosecond pulse laser is tightly focused in space, photopolymerization is initiated by the two-photon absorption(TPA), which can limit the fabrication area in the center of the focus. The interaction time of the ultrashort pulse with the material is much lower than the thermal relaxation of the material, avoiding the photothermal effect. The lateral linewidth can be reduced to about 100 nm due to the strong threshold characteristics of the two-photon absorption process. Thus, TPP is an ideal fabrication method in the field of 3D micro-nanostructure. Since 2001, Kawata’s team has used a near-infrared femtosecond laser with a wavelength of 780 nm to fabricate a "nanobull" with the size of red blood cells. It fully demonstrated the advantages of TPP in the preparation of three-dimensional micro-nano structures. At the same time, a polymer nanodot with a size of 120 nm was fabricated, which was only 1/7 of the laser wavelength, breaking the optical diffraction limit in this study. Since then, scientists from various countries have improved the line width, resolution, and other parameters of 3D structure by continuously improving the materials, structure, processing technology and light field control, and other aspects. At the same time, with the continuous development and improvement of the 3D nanostructure fabrication technology, the advantages of TPP technology are also reflected in some application fields, such as micro-optical devices, integrated optical devices, micro-electromechanical systems, and biomedical devices. This paper will systematically introduce the femtosecond laser TPP micro-nanofabrication technology, including the fabricating principle, the development of fabricating methods, and its research overview in many application fields. Finally, its existing problems and future development and application prospects are discussed.
飞秒激光 双光子聚合 光学衍射极限 加工分辨力 加工效率 femtosecond laser two-photon polymerization optical diffraction limit resolution efficiency 
光电工程
2023, 50(3): 220048
作者单位
摘要
1 中国石化西北油田分公司 石油工程技术研究院,乌鲁木齐 830011
2 中国石化缝洞型油藏提高采收率重点实验室,乌鲁木齐 830011
3 中国矿业大学 煤炭资源与安全开采国家重点实验室,徐州 221116
爆破裂纹的空间形态是进行爆破设计的理论依据。地下超深孔爆破炮孔处在围压作用之中,无爆破自由面,此种条件下爆破裂纹空间形态有待进一步的研究。采用4000 kN大型真三轴加载设备和煤矿许用导爆索分别提供围压静载和爆炸动载,并浇筑300 mm×300 mm×300 mm尺寸水泥砂浆立方体试块,采用的等效炸药量均为3 g,围压条件下试块加载的第一、第二、第三主应力分别为8.50 MPa、7.00 MPa、5.75 MPa,对比分析有、无围压两种条件爆破裂纹的空间形态差异。研究发现:围压条件下的爆破裂纹空间形态与拥有爆破自由面条件的爆破裂纹空间形态差异极大,四周拥有爆破自由面条件下试块爆破破碎为碎块,在块度尺寸L<100 mm和100 mm≤L≤200 mm范围内的破碎块度质量分别占试块总质量的30%和70%,其中大尺寸150 mm≤L<200 mm范围内的块度质量占比达到55.32%,但是数量较少,并且都产生于试块表面; 围压条件下,在垂直于第二主应力方向产生一个以封孔器为中心对称的宏观破裂面,在试块的其它表面上产生了几条宏观裂纹。试块剖开后,在炮孔壁部产生微裂纹,在预先射孔方向的孔壁处产生明显的裂纹。
爆炸致裂 围压 真三轴设备 裂纹空间形态 blasting fracturing confining pressure true triaxial equipment spatial morphology of crack 
爆破
2022, 39(2): 0009
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心有机纳米光子学实验室,北京 100190
2 中国科学院大学未来技术学院,北京 101407
为探索不同尺寸的水凝胶微图案对细胞的诱导调控作用,本文采用飞秒激光无掩模投影光刻技术,将水凝胶前驱体溶液制备成所设计的图案,同时结合大面积拼接,获得了具有大面积、不同尺寸的多边形和多角星微结构。详细研究了微结构的最佳加工条件及其浸润性。带有微结构的基底与成纤维细胞共培养的实验结果表明,微结构的空间限位作用会改变细胞形貌,从而能够对细胞的生长行为进行有效地调控。尤其在小尺寸的多边形和多角星微结构上,细胞核会落入微结构的中心陷窝,细胞骨架则不断铺展分布,并逐渐与微结构形貌趋于一致。该研究证实了微结构图案单元尺寸对诱导细胞行为功能至关重要,将为利用生物相容性水凝胶微结构进行体外细胞研究提供新技术与新方法。

无掩模投影光刻 水凝胶 微图案 细胞行为 maskless optical projection lithography hydrogel micropattern cell behavior 
光电工程
2022, 49(2): 210336
王荣荣 1,3张维彩 1,3金峰 1董贤子 1[ ... ]郑美玲 1,*
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心, 北京 100190
2 清华大学机械与工程学院, 北京 100084
3 中国科学院大学未来技术学院, 北京 101407
为直接制备小尺度且具有可控形貌的导电聚合物微结构,利用一种基于飞秒激光的双光子聚合法,实现了聚苯胺在基底上任意位置处微纳米尺寸线条的精准可控制备。以苯胺为单体、硝酸为氧化剂,通过调控苯胺与硝酸的浓度,可以制备出具有不同形貌的聚苯胺微纳米线。不溶于水的苯胺高聚物在水相界面处合成,苯胺与硝酸的浓度及激光功率会影响水溶性苯胺低聚物的分布,进而影响聚苯胺微纳米线的形貌。当苯胺与硝酸浓度分别为0.69mol·L -1和0.60mol·L -1时,可制备出具有致密光滑形态、电导率为5.79×10 -6 S·cm -1的聚苯胺微纳米线。本研究为导电聚合物的制备及其在传感器、微型探测器等微纳米器件中的广泛应用提供了新思路。
激光光学 微纳结构 双光子聚合 导电聚合物 聚苯胺 
中国激光
2021, 48(2): 0202006
作者单位
摘要
1 中国科学院理化技术研究所仿生智能界面科学中心, 北京 100190
2 中国科学院大学, 北京 101407
采用数字微镜器件(DMD)无掩模光刻技术,以飞秒激光为光源,结合大面积拼接的方法快速制备了具有较高分辨率和毫米尺寸的大面积微纳结构。提出以单子场投影线扫描的方式进一步改善由于光场能量分布不均匀引起的结构边缘粗糙的问题,极大地降低了线条的边缘粗糙度,有效地控制了结构的精度。本研究以半导体领域常用的正性光刻胶为主要研究对象,实现了面积为7.4 mm 2的1 μm等间距线阵列和面积为38.7 mm 2的10 μm等间距线阵列结构的快速制备。本研究为大面积微纳结构制备提供了一种新方法,所制备结构可应用于气液流动、药物输运及晶体生长等领域。
激光光学 微纳结构 正胶 大面积 数字微镜器件无掩模光刻 边缘粗糙度 
激光与光电子学进展
2020, 57(11): 111421
周冯斌 1,2刘玉柱 1,2,*丁宇 1,2尹文怡 1,2[ ... ]章炎麟 1,2
作者单位
摘要
1 江苏省大气海洋光电探测重点实验室(南京信息工程大学), 江苏 南京 210044
2 江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044
3 Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
煤灰的成分指的是煤中矿物质的完全燃烧, 产生各种金属和非金属氧化物和盐, 这是使用煤时的重要参数。 煤被广泛用于生产和人民生活, 作为重要的能源物质。 大量来自燃煤燃烧的煤尘(煤灰)被释放到大气中并与大气中的各种物质相互作用而形成雾霾。 煤灰中的金属氧化物和空气中的小液滴之间发生一系列物理化学反应, 这导致了雾霾的形成。 在实验中, 采用激光诱导击穿光谱(LIBS)分析煤灰中的元素。 实验样品由某钢铁公司提供, 分为七个样品, 并标上序号。 样品分别加入蒸馏水和0.1‰, 0.2‰, 0.2%, 0.4%, 0.8%, 1%硫酸锌溶液, 分别用1~7号标记。 为了获得更好的LIBS信号, 样品被研磨为粉末状, 并使用蒸馏水使硫酸锌与煤灰充分混合。 通过使用压片机将煤灰压制成10 mm直径和10 mm厚的煤灰块。 为获得准确的元素结果, X射线荧光光谱也被用作参考, 并且原始样品不含锌元素。 由于光谱分析和波长漂移现象的不确定性, 因此实验中, 分别选择了铁, 钙, 钛和铝四种高纯单质。 在相同的实验条件下, 将四条测量的元素谱线与NIST原子光谱数据库中相应的谱图比较。 实验中的所有光谱根据波长差或偏移进行校正。 此时, 纯单质的元素谱线可以与样品的光谱对齐。 当元素谱中的特征线与样品中的谱线对齐时, 样品就可以被识别和确认。 由于铝元素与目标元素具有相似的化学和物理性质, 铝元素是煤灰和地壳中的主要元素之一, 具有中等的光谱强度。 因此将铝元素作为内标元素, 运用内标校准方法来确定样品中锌的浓度。 模拟含锌大气气溶胶是通过向煤灰中添加含锌元素来实现的。 还有一些其他的金属元素, 包括铁, 钙, 锰, 钛和铝也被用来加入煤灰中, 用以模拟大气气溶胶。 两种方法的相对差异分别为1.78%, 3.39%, 5.17%, 0.20%。 造成差异的原因可能是由于光谱仪缺乏分辨率或背景噪声的影响, 这是可能导致测量误差的原因之一。 由于实验室条件的限制, 无法确定基底是否会影响实验结果, 这将在未来的实验中得到进一步的证实。 实验拟合曲线测得煤灰中锌的线性相关系数为0.995 72, 这表明可以通过粗略估算锌的激光强度来估计煤灰中的锌含量的实现。 实验结果证明LIBS技术可用于煤灰中金属元素的快速检测, 为基于锌含量的大气环境检测提供了一种新方法。 在建立元素的校准曲线后, LIBS技术将来可以用来进行更快速, 更准确的定量分析。
激光诱导击穿光谱 煤灰 重金属  气溶胶 定量分析 Laser-induced breakdown spectroscopy Coal ash Metal Zinc Aerosols Quantitative analysis 
光谱学与光谱分析
2019, 39(6): 1980
作者单位
摘要
1 江苏省大气海洋光电探测重点实验室(南京信息工程大学), 南京 210044
2 江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044
3 Advanced Technology Core, Baylor College of Medicine, 德克萨斯 休斯顿 77030, USA
大气颗粒物中的重金属对人体健康具有巨大危害,对其中的重金属元素进行快速检测具有重要意义。利用激光诱导击穿光谱技术对大气颗粒物样品中的重金属元素进行快速分析,结果显示在大气颗粒物样品中含有Na、Al、Si、Cu、Mg、Fe等元素。以Ca元素为参考元素,采用内标法对大气颗粒物中的Pb元素进行定量分析,通过拟合得到定标曲线,计算出Pb元素的检出限为34.3×10 -6。分析了Pb元素的等离子体温度、电子数密度等相关特性。实验结果验证了LIBS技术用于大气颗粒物中重金属元素定性与定量分析的可行性,为监测大气颗粒物重金属污染提供了实验依据。
光谱学 激光诱导击穿光谱 大气光学 颗粒物 重金属 定量分析 
激光与光电子学进展
2018, 55(12): 123002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!