作者单位
摘要
重庆邮电大学光电工程学院, 光电信息感测与传输技术重庆重点实验室, 重庆 400065
硝酸盐氮(NO3-N)是水中“三氮”(硝酸盐氮、 亚硝酸盐氮、 氨氮)之一, 能够反映水体受污染的程度, 是水质评估的一项重要指标。 水体中的硝酸盐氮浓度过高不仅会导致水环境污染加重, 而且会对人畜及水产构成较大威胁。 传统的硝酸盐氮检测必须先反应后测定, 具有时间长、 操作复杂、 有二次污染等缺点。 光谱法具有快速、 无损、 无试剂消耗等显著优点。 针对硝酸盐氮难以快速检测的问题, 提出了一种基于紫外吸收光谱的快速定量分析硝酸盐氮的方法。 采集42份浓度为0~20 mg·L-1的硝酸盐氮标准溶液样本的紫外吸收光谱, 每份样本经11次平均处理以减少仪器噪声和环境的影响。 采用SPXY算法按照7∶3的比例划分训练集、 测试集, 对紫外吸收光谱数据使用Savitzky-Golay(SG)滤波算法进行预处理, 通过10折叠交叉验证获得套索回归(lasso regression)合适的正则化参数λ=0.203 6, 再使用Lasso回归在全光谱范围内筛选出与硝酸盐氮相关的光谱特征波长, 将特征波长处的吸光度与样本浓度进行偏最小二乘(PLS)拟合建立硝酸盐氮的回归模型。 采用此建模方法所建立的模型训练集的R2与RMSE分别为0.999 91和0.060 15 mg·L-1, 测试集的R2与RMSE分别为0.999 72和0.046 91 mg·L-1。 为了验证提出的SG-Lasso-PLS预测模型效果, 另外建立了Lasso-PLS, SG-PCA-PLS和SG-PCA-SVR三种预测模型进行对比。 验证结果表明, SG-Lasso-PLS建立的预测模型的R2和RMSE均优于其他三种预测模型。 说明SG滤波能够消除光谱信号的随机噪声, 提高模型的预测精度。 与PCA数据降维算法相比, Lasso可实现全光谱范围内的光谱特征选择和数据降维, 能有效消除光谱数据的冗余信息, 提高模型的预测精度。 因此, 本文提出的SG-Lasso-PLS混合模型能够快速准确的对水体中的硝酸盐氮进行预测。 作为硝酸盐氮浓度检测的基础研究, 能为快速无污染的水质在线监测场景提供算法参考。
硝酸盐氮 紫外吸收光谱 Lasso回归 PLS回归 Nitrate nitrogen UV absorption spectroscopy Lasso regression PLS regression 
光谱学与光谱分析
2023, 43(4): 1037

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!