王希群 1,2,3,4梁永军 5张军平 5吴佳佳 5[ ... ]金振宇 1,3,4,*
作者单位
摘要
1 中国科学院云南天文台,云南 昆明 650011
2 中国科学院大学,北京 100049
3 云南省太阳物理与空间目标监测重点实验室,云南 昆明 650011
4 云南省应用天文技术工程实验室,云南 昆明 650011
5 中国科学院国家天文台南京天文光学技术研究所,江苏 南京 210042
6 中国科学院国家天文台,北京 100101
7 中国科学院空天信息创新研究院,北京 100049
Lyot滤光器是太阳大气窄带成像观测的关键设备,用于太阳光球磁场测量和太阳色球成像观测。传统Lyot滤光器以波片旋转方式实现谱线扫描观测,谱线扫描速度慢,观测过程中不易消除湍流大气的影响。使用液晶相位可变延迟器替代旋转波片,可大幅提升滤光器谱线扫描速度。针对太阳光球磁场高分辨观测需求,研制了中心波长为5324.19 ?的液晶Lyot滤光器,该滤光器的透过率半宽为0.1 ?,透过波长切换时间小于100 ms。利用太阳光谱仪对该滤光器的谱线透过率轮廓进行了定标,并将其安装在云南天文台抚仙湖一米新真空太阳望远镜(NVST)上进行观测验证,获得了高分辨的太阳光球单色像及光球宁静区视向(LOS)速度场。光谱仪测试和NVST观测结果表明,该滤光器的谱线扫描速度和透过率半宽等参数满足NVST的太阳光球磁场和速度场高分辨率观测要求。
滤光器 液晶 太阳光谱 多波长成像 
光学学报
2023, 43(24): 2423001
孙伟民 1,*陈旭东 1闫奇 1,2耿涛 1[ ... ]王鹏飞 1
作者单位
摘要
1 哈尔滨工程大学物理与光电工程学院, 纤维集成光学教育部重点实验室, 黑龙江 哈尔滨 150001
2 哈尔滨工程大学烟台研究院, 山东 烟台 264006
3 青岛哈尔滨工程大学创新发展中心, 山东 青岛 266000
4 中国科学院云南天文台, 云南 昆明 650011
三维成谱成像技术是一种能够对观测视场中的所有展源目标进行实时光谱获取的技术, 它可以通过单次采样同时获得目标光谱域和二维空间域信息。 光纤积分视场单元(IFU)则是天文三维成谱成像技术的关键器件, 通过将接收的像面切分, 将像面信息细分到若干单元传递至光谱仪, 在此过程中二维的展源目标被重整为互不干扰的线性排列供光谱仪进行采样提取, 能有效提高天文观测的时间分辨率。 介绍一种具有242光纤单元的IFU, 该IFU目前应用于中科院云南天文台的光纤阵列太阳光学望远镜(型号FASOT-1B)系统。 为满足FASOT-1B的指标要求, 获得高传输效率、 高光谱分辨率和高时间分辨率观测效果, 该IFU采用微透镜阵列加光纤阵列的结构, 该微透镜为正六边形球面镜, 实现接近100%的空间填充率。 综合考虑光纤积分视场单元前置望远镜系统和后端光谱仪系统的设计参数, 优化设计了一对11×11的微透镜阵列, 相邻微透镜间距300 μm, 每个微透镜对应天区1.5″, 以焦比F/8.2将接收到的光汇入与其对应的光纤纤芯中。 系统分析光纤芯径与光谱仪光谱分辨率间的关系, 设计的光纤规格为: 35/105/125 μm, 该设计既能满足光纤接收微透镜所传递的全部光信息, 同样可以得到系统需求的光谱分辨率和相对短的狭缝宽度。 量化分析IFU阵列端光纤直径与微微孔深度对光纤实际入射焦比的影响, 选定的微孔尺寸直径130 μm, 深3 mm。 阵列端二维排布的光纤在赝狭缝端经过重整, 以线性排列将光信息导入光谱仪, 相邻光纤间距130 μm。 整个IFU的能量传输效率均值77.7%, 波动值RMS 1.6%; 所有光纤出射焦比EE90均慢于F/7。 IFU出射端(赝狭缝端)光纤横向(排列方向)偏移量RMS值小于2.7 μm, 纵向(垂直于排列方向)偏移量RMS值小于1.8 μm。 FASOT-1B系统安装IFU并调试后进行了验证性观测, 成功获取了太阳NOAA12738活动区MgI色球的斯托克斯光谱, 该IFU也成为国内首个自主研制并应用于科学观测的光纤加微透镜型IFU。
三维成谱成像 光纤阵列太阳光学望远镜 积分视场单元 太阳光谱 Three-dimensional spectral imaging Fiber array solar optical telescope IFU Solar spectrum 
光谱学与光谱分析
2023, 43(4): 1168
作者单位
摘要
西藏大学太阳紫外线实验室, 西藏 拉萨 850000
日食现象会对地球太阳辐射、 大气气象以及人类活动等造成相应的影响。 2020年6月21日(夏至)在西藏发生了一次日食现象, 西藏阿里日环食最大食分达到了0.995, 拉萨地区日偏食食分也高达0.953。 两地日食均发生在当地正午前后。 本研究利用罕见的日食出现机会, 对西藏阿里和拉萨日食过程中的太阳光谱、 太阳总辐射和太阳紫外线变化特征进行了同步观测研究。 观测表明阿里日环食在当地正午(北京时间14:41分)前后持续了约3小时27分钟; 拉萨日食出现时间比阿里滞后约26 min, 持续时间比阿里短3分28秒。 实地观测表明在日食期间, 阿里光谱观测中最强单色(476.6 nm)光峰值从初亏(13:01分)时刻的1 669.234 mW·m-2·nm-1陡然衰减到食甚(14:44分)时刻的61.936 mW·m-2·nm-1, 损失约96.0%; 相应时刻太阳总辐射强度从1 221.217 W·m-2衰减到56.086 W·m-2, 也损失约95.4%。 拉萨日食期间最强单色(476.6 nm)光峰值从初亏(13:27分)时刻的1 563.876 mW·m-2·nm-1亏损到食甚(15:13分)时刻的26.391 mW·m-2·nm-1, 亏损约98.3%; 相应时刻太阳总辐射强度从1 605.663 W·m-2衰减到28.169 W·m-2, 也亏损约98.2%。 观测研究发现拉萨太阳紫外线B剂量率从初亏的60.8 W·m-2减弱到食甚的0.9 W·m-2值, 减弱了98.5%。 该次日食对西藏地面各种太阳辐射强度造成95%以上能量损失。
西藏 日食 太阳光谱 总辐射 紫外线B Tibet Solar eclipse Solar spectrum Global solar irradiance UVB 
光谱学与光谱分析
2021, 41(12): 3892
胡凯 1,2徐亮 1杨伟锋 1曲立国 1,2[ ... ]刘文清 1,2
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
开发了一种基于太阳跟踪方法用于测量大气污染气体成分的傅里叶变换红外 (FTIR) 光谱系统, 该系统由太阳跟踪器、光路传输部分、光谱仪组成。设计了一种正交反射镜系统用于收集太阳光, 利用小孔成像原理实现太阳跟踪, 保证跟踪光路与测量光路同轴。推导了跟踪旋转时位置探测器 (PSD) 上光斑轨迹的理论计算公式, 用于指导 PSD 算法。该系统的工作波段为 600 ~ 5000 cm-1, 分辨率为 0.5 cm-1。利用光学软件 Zemax 分析了用于汇聚干涉光束的抛物镜焦距对干涉条纹的影响, 确定抛物镜焦距值为 52.5 mm, 满足系统指标的入射光的最大倾斜角为 0.118°, 给出了 PSD 的测量精度和系统跟踪精度的技术指标。并利用搭建的实验平台进行了初步户外实验, 验证了系统的合理性。
光谱学 太阳光谱 太阳跟踪 光学设计 傅里叶变换 光斑轨迹 spectroscopy solar spectrum sun tracking optical design Fourier transform spot trajectory 
量子电子学报
2021, 38(3): 290
作者单位
摘要
青岛大学电子信息学院, 山东 青岛 266071
具有宽带高吸收特性的吸收器是太阳能利用的关键。设计了一种含有抗反射层的基于二维光子晶体结构的太阳能吸收器,其中砷化镓(GaAs)作为吸收介质,被填充到具有四方晶格结构的二维光子晶体的钨(W)基底圆形空腔中。采用有限元法进行了模拟计算分析,结果表明,在300~2500 nm的波长范围内,吸收器的平均吸收率为92.5%,有效吸收率高达94.9%,入射仰角为50°时,有效吸收率仍有90.13%。该结构具有全太阳光谱高吸收、偏振不敏感和广角吸收等特点。研究结果为高性能太阳能吸收器的设计提供了参考。
材料 太阳能吸收器 二维光子晶体 抗反射膜 吸收谱 全太阳光谱 
光学学报
2021, 41(5): 0516002
黄俊 1,2黄印博 1卢兴吉 1,*曹振松 1[ ... ]刘丹丹 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室,安徽合肥230031
2 中国科学技术大学 研究生院科学岛分院,安徽合肥230026
激光外差光谱测量技术具有光谱分辨率高、探测灵敏度高、成本低等特点,近年来在温室气体探测、激光大气传输等领域得到了广泛的应用。以3.66 μm 分布反馈式带间级联激光器作为本振光源搭建了一套高分辨率激光外差太阳光谱测量装置,实现了水汽吸收光谱的实时测量,并利用最优估算法对整层大气中的水汽柱浓度进行了反演,得到合肥地区2019年5月22日和23日的水汽柱浓度。反演结果与同步进行观测的傅里叶变换光谱仪EM27/SUN测量结果变化趋势一致,相关性优于0.8,偏差小于15%。研究结果表明,搭建的激光外差光谱测量装置能够实现大气中水汽吸收光谱的实时测量以及水汽柱浓度的精确反演,同时为后续的水汽浓度廓线测量与研究奠定了基础。
激光外差 太阳光谱 最优估算法 水汽柱浓度 laser heterodyne solar spectrum optimal estimation method water vapor column concentration 
红外与毫米波学报
2020, 39(5): 610
作者单位
摘要
西藏大学太阳紫外线实验室, 西藏 拉萨 850000
地面太阳光谱记录了太阳光经历大气层的烙印与信息, 为大气环境、 生态保护等研究提供实地依据。 西藏高原空气稀薄, 地面太阳辐射超强, 观测西藏地面太阳光谱为太阳能利用提供实地数据。 文章较系统地报道了西藏地面太阳光谱的实地观测结果, 为相关高原科学研究提供高精度数据。 利用RAMSES光谱仪、 CMP6太阳总辐射仪和NILU-UV太阳紫外辐射仪对西藏不同地区、 不同季节太阳光谱、 太阳总辐射和太阳紫外线进行了全方位的实地观测研究。 观测研究了高海拔的西藏拉萨和那曲以及低海拔的北京和成都的光谱特征; 研究了拉萨二分二至当地正午(北京时间13:55时)太阳光谱观测结果; 对西藏地面光谱与AM1.5和AM0标准光谱进行了对比研究。 观测研究了西藏拉萨和那曲太阳总辐射、 太阳紫外线强度特征。 研究发现拉萨夏季可见和红外区光谱光强度甚至超过AM0光谱相应波长的强度, 即: 拉萨地面可见光和红外光强度偶尔超过大气层顶部的相应波长光强, 是由部分云的反射增量所致; 拉萨光谱谱峰出现在波长476.6 nm左右, 在2017年的夏至观测到的最大值为2.331 W·m-2·nm-1。 然而, 对太阳紫外线(280~400 nm)光谱的观测发现地面太阳紫外区的光谱强度总是明显低于AM0光谱相应区光强, 表明短波的紫外光被大气臭氧有效吸收。 虽然拉萨海拔3 680 m, 但通过对拉萨当地正午太阳紫外光谱分析发现拉萨地面波长小于300 nm的太阳紫外光谱强度几乎为零, 表明波长小于300 nm的太阳紫外线被大气层吸收, 没有到达地面。 同时, 研究了西藏高海拔太阳光谱与北京、 成都低海拔太阳光谱特征, 揭示了各地大气成分、 含量等诸多信息。 报道了2010年7月—2013年12月期间西藏太阳总辐射的观测结果; 结果显示拉萨当日太阳总辐射最大值中约18%超过了太阳常数(1 367 W·m-2)。 观测发现拉萨太阳总辐射瞬时最大值达到了1 756.09 W·m-2(2011年6月24日)。 报道了2008年7月—2013年12月期间西藏太阳紫外线的观测结果; 结果显示拉萨和那曲UVA日最大值平均值约为67 W·m-2, UVB日最大值平均值约为5.1 W·m-2; 拉萨和那曲当日太阳紫外线A和紫外线B最大值变化趋势保持了很好的一致性, 在5年多的观测期间紫外线强度没有出现明显的增强或减弱趋势。
西藏 太阳光谱 太阳总辐射 太阳紫外辐射 Tibet Solar spectrum Global irradiance Solar UV irradiance 
光谱学与光谱分析
2019, 39(6): 1683
作者单位
摘要
南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
采用磁控溅射镀膜仪制备了基于过渡金属W和介质SiO2的6层薄膜样品,膜系结构为Cu (>100.0 nm)/SiO2(63.5 nm)/W(11.0 nm)/SiO2(60.0 nm)/W(5.4 nm)/SiO2(75.5 nm)。在250~2500 nm的波长范围内,该样品的太阳光吸收率为95.3%,且在400 ℃低真空(6 Pa)条件下退火72 h之后,样品的反射光谱特性变化较小,证明了该样品具有极高的热稳定性。使用红外热成像仪对样品的红外辐射特性进行了在位实时表征,结果表明样品具有低辐射特性。这些优良的特性有利于该样品在太阳能光热转换中的应用。
薄膜 太阳光谱选择性吸收 磁控溅射 热辐射 热成像仪 
光学学报
2019, 39(5): 0531001
邓昊 1,2,*杨晨光 1管林强 1,2许振宇 1[ ... ]何亚柏 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
搭建了一套以1.57 μm近红外半导体激光器作为本振光源的小型化被动式激光外差探测系统,并将其用于大气环境监测。为对该系统的性能进行评估,以窄线宽近红外外腔激光器岀射的光作为信号光,与本振光混频,得到系统的带宽为0.032 cm -1,最小可探测灵敏度为25 pW,为光电探测器暗电流噪声功率的1/68。利用该系统对大气CO2太阳光谱信号进行测量,并反演了其中两条主要强吸收线所对应的体积分数,结果均约为396×10 -6,误差为7.6×10 -6,测量结果与实际整层大气中的CO2柱浓度一致,验证了该系统的可行性。
大气光学 近红外半导体激光器 被动式激光外差探测系统 CO2太阳光谱 柱浓度 
中国激光
2019, 46(3): 0311001
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 中国科学院通用光学定标与表征技术重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
仪器线型函数是傅里叶光谱仪重要的物理表征参数之一, 影响仪器测量光谱的精度.随着空间测量和大气探测等遥感应用在高精度上的需求, 如何实时在轨测量并更新星载光谱仪的仪器线型函数, 成为当前提高在轨超高分辨率光谱仪测量精度的重要手段.以傅里叶型光谱仪为例, 根据仪器线型函数的原理, 利用在轨超高分辨率光谱仪实测太阳光谱定标数据不受大气气溶胶影响且具有独立太阳弗朗和费线的特征, 来对在轨超高分辨率光谱仪的仪器线型函数进行监督和更新.实验以Kurucz太阳光谱模型作为参考光谱, 在对应波段范围内分别选取多条实测太阳定标光谱和参考光谱的特征峰, 通过调整光谱仪的狭缝模型, 对特征峰残差进行迭代对比, 演算出仪器ILS参数变化.最后, 用更新的仪器线型函数与临边理论光谱卷积, 与实测临边定标光谱比较验证, 误差范围在-6%~8%.结果表明, 该方法可为在轨超高分辨率光谱仪仪器线型函数的监督更新提供参考依据.
仪器线型函数 定标光谱 傅里叶光谱仪 太阳光谱模型 特征峰 在轨运行 instrument line shape function calibration spectrum fourier spectrometer solar spectrum model characteristic peak on-orbit 
红外与毫米波学报
2018, 37(5): 613

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!