刘红元 1,*吴斌 1,2姜涛 3杨延召 1[ ... ]李京松 1
作者单位
摘要
1 中国电子科技集团公司第四十一研究所, 山东 青岛 266555
2 电子测试技术重点实验室, 山东 青岛 266555
3 中电科思仪科技股份有限公司, 山东 青岛 266555
绝对光谱响应度是探测器的重要技术参数之一, 随着太赫兹探测技术的发展, 精确测量太赫兹探测器的绝对光谱响应度变得越来越重要。 由于在太赫兹波段缺乏连续可调谐的太赫兹光源以及分光系统, 因此无法采用传统测量红外探测器绝对光谱响应度的方法来实现对太赫兹探测器绝对光谱响应度的测量。 基于反射法测量了2~10 THz相对光谱响应度, 通过CO2泵浦气体激光器作为泵浦光源测量了2.52和4.25 THz绝对响应度, 转化得到2~10 THz探测器的绝对光谱响应度, 并且对2.52和4.25 THz绝对响应率和相对光谱响应度这两个频率点进行了相互验证, 2.52和4.25 THz绝对响应度测量值之比为0.753, 相对光谱响应度测量平均值之比为0.749, 两者之差仅为0.004, 因此, 说明本文采用的反射法测量太赫兹探测器相对光谱响应度的方法是可行的。 另外水汽在太赫兹波段的测试有很大的影响, 对1.5~10 THz波段大气的衰减特性进行了测试, 试验表明水汽对太赫兹波有明显的衰减作用, 在不同环境湿度下测量时会产生不同的结果, 因此在太赫兹探测器测量过程中需要严格的控制大气的湿度, 从测试数据可得到, 大气中的湿度越小越好。 特别是在3.3 THz波段之前, 由于本身的信号比较弱, 如果水汽过大或测试过程中变化较大, 将严重影响测试效果。 该系统可以满足太赫兹探测器的研制、 生产、 检测和应用, 它可以为材料的选取、 工艺改进、 数据补偿、 光学系统设计、 图像处理提供指导, 同时也可以推动太赫兹**装备效能的重要依据。 因此, 太赫兹探测器绝对光谱响应度的测量对器件设计制造者、 成像装备系统设计制造者以及器件使用者来说都具有非常重要的指导意义。
太赫兹探测器 反射法 绝对光谱响应度 相对光谱响应度 水汽 Terahertz detector Reflection method Absolute spectral responsivity Relative spectral responsivity Water vapor 
光谱学与光谱分析
2023, 43(4): 1017
潘晓凯 1,*姜梦杰 1,2王东 1,3吕旭阳 1,2[ ... ]陆卫 1
作者单位
摘要
1 中国科学院上海技术物理研究所红外物理国家重点实验室, 上海 200080
2 东华大学理学院, 上海 201620
3 上海师范大学数理学院, 上海 200233
4 上海科技大学物质科学与技术学院, 上海 201210
5 上海大学微电子学院, 上海 200444
自红外辐射被发现以来, 科学家一直在努力将红外技术应用于地球观测、航天遥感和宇宙探索等领域。目前, 第二、三代红外探测器已进入大规模应用, 高端三代也在逐步突破, 并随着材料制备技术、纳米加工技术、集成技术和相关交叉学科的发展, 开始出现了具有前瞻性的新材料、新技术和新概念。红外-太赫兹探测器也开始由单一探测、被动探测和探测分立的传统探测器形式, 逐渐走向多维探测、自主探测和智能化芯片集成的变革发展方向。在介绍光电探测器物理机制的基础上, 概述了红外-太赫兹探测技术在天文遥感领域的应用与发展, 重点综述了红外-太赫兹探测器有望出现变革式发展的三大方向, 包括基于人工微结构的光场集成、基于三维堆叠技术的片上智能化和新型低维材料的应用, 并展望了未来探测器向着超高性能、多维感知、智能化和感存算一体化的发展趋势。
光电子学 太赫兹探测器 天文遥感 多维感知 集成化 二维材料 optoelectronics terahertz detector astronomical remote sensing multi-dimensional perception integration two-dimensional material 
量子电子学报
2023, 40(2): 217
刘一霆 1,2,3丁青峰 2,3,4冯伟 1,2,3朱一帆 1,2,3[ ... ]程凯 5
作者单位
摘要
1 中国科学技术大学 纳米技术与纳米仿生学院,安徽 合肥 230026
2 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室,江苏 苏州 215123
3 江苏省纳米器件重点实验室,江苏 苏州 215123
4 上海科技大学 物质科学与技术学院,上海 201210
5 苏州晶湛半导体有限公司,江苏 苏州 215000
矢量测量是表征太赫兹波段天线与准光系统波束特性的主流技术。该文介绍了一种基于AlGaN/GaN高电子迁移率晶体管(High-electron-mobility transistor, HEMT)混频探测器的太赫兹矢量测量系统。该系统核心器件为以准光-波导为耦合方式的高灵敏度太赫兹混频探测器,在340 GHz频率外差模式下,其噪声等效功率达−113 dBm/Hz。为了抑制系统相位噪声,搭建了基于二次下变频原理的硬件电路。通过对固定位置天线的长时间测量,表明系统相位稳定度优于4°,系统最小可测功率达到119 nW。基于相干AlGaN/GaN HEMT混频探测器实现了太赫兹连续波幅度和相位分布测量,该工作为后续阵列化太赫兹矢量测量提供了基础。
矢量测量 太赫兹探测器 相干探测 高电子迁移率晶体管 氮化镓 vector measurement terahertz detector coherent detection HEMT GaN 
红外与激光工程
2023, 52(1): 20220278
作者单位
摘要
中国电子科技集团公司第四十一研究所, 山东青岛 266555
随着太赫兹探测技术的发展, 精确测量太赫兹探测器的光谱响应变得越来越重要。分析了太赫兹探测器相对光谱响应的测量原理, 搭建了一套太赫兹探测器相对光谱响应测量系统,对系统测量不确定度来源进行分析, 选用太赫兹探测器对测量系统不确定度进行验证。通过分析实验数据可知, 在 1~10 THz范围内, 系统的扩展不确定度为 9.2%, 可以满足目前太赫兹探测器相对光谱响应测量的需求。
太赫兹探测器 光谱响应度 交替法 测量不确定度 terahertz detector relative spectral response alternate method uncertainty of measurement 
太赫兹科学与电子信息学报
2022, 20(12): 1245
吴昊 1,2,3朱一帆 1,3,4丁青峰 1,2,3张金峰 1,3[ ... ]秦华 1,2,3
作者单位
摘要
1 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室,江苏 苏州 215123
2 上海科技大学 物质科学与技术学院,上海 201210
3 中国科学院纳米器件与应用重点实验室 江苏省纳米器件重点实验室,江苏 苏州 215123
4 中国科学技术大学 纳米技术与纳米仿生学院,安徽 合肥 230026
为充分发挥AlGaN/GaN高电子迁移率晶体管 (High-Electron-Mobility Transistor, HEMT)太赫兹探测器阵列的高电子迁移率优势,文中研究了HEMT太赫兹探测器阵列在77 K下的探测特性。使用液氮杜瓦为降温主体搭建了适用于焦平面 (Focal-Plane Array, FPA)芯片的低温系统,实现了对焦平面芯片常温与低温下的对比测试。温度从300 K降到77 K时,探测器阵列像元的平均响应度提高近3倍,平均噪声有小幅增大,340 GHz时平均噪声等效功率 (Noise Equivalent Power, NEP)从45.1 pW/Hz1/2降低到了19.4 pW/Hz1/2,灵敏度提高两倍以上。与硅透镜耦合的单元探测器相比,阵列像元的灵敏度提升仍有较大空间。主要是由于各像素点最佳工作电压的不一致,导致在给定统一工作电压下像元间的响应度和噪声都表现出较大的离散性,文中讨论了降低最佳工作电压离散度的可能解决方案。
太赫兹探测器 低温焦平面 成像芯片 氮化镓HEMT terahertz detector low-temperature focal-plane imaging chip gallium nitride HEMT 
红外与激光工程
2022, 51(12): 20220225
作者单位
摘要
1 东华大学理学院, 上海 201620
2 中国科学院上海技术物理研究所, 上海 200083
太赫兹天线是太赫兹探测器的关键组成部分, 可以协助太赫兹探测器更加精确、更加快速地探测到太赫兹信号。主要针对所研发的分形蝶形天线尖端效应进行了深入的研究。设计了一款工作频率在0.1~2 THz之间的分形蝶形天线。该天线在0.6 THz频率下谐振, 其回波损耗最小可达到-15.89 dB, 最高增益为6.87 dB。所展示的谐振分形蝶形天线经过优化后, 可在弓尖(尖端)产生高度增强的局域场。借助这种高度集中的能量耦合效果可以有效地提高太赫兹探测器的性能。
太赫兹技术 太赫兹天线 太赫兹探测器 分形蝶形天线 尖端效应 terahertz technology terahertz antenna terahertz detector fractal butterfly antenna point effect 
光学与光电技术
2022, 20(5): 122
廉宇轩 1,2冯伟 1,2丁青峰 2,3朱一帆 1,2[ ... ]程凯 4
作者单位
摘要
1 中国科学技术大学 纳米技术与纳米仿生学院,安徽 合肥 230026
2 中国科学院苏州纳米技术与纳米仿生研究所 纳米器件与应用重点实验室,江苏 苏州 215123
3 上海科技大学 物质科学与技术学院,上海 201210
4 苏州晶湛半导体有限公司,江苏 苏州 215000
利用天线耦合AlGaN/GaN HEMT太赫兹探测器的自混频和外差混频效应,分别设计并测试了340 GHz频段直接检波式和外差混频式接收机前端。通过接收机信噪比的测量和接收功率的定标,得到了两种接收机的等效噪声功率。直接检波模式下探测器的响应度约为20 mA/W,直接检波模式和外差混频模式下接收机的等效噪声功率分别约为−64.6 dBm/Hz1/2和−114.79 dBm/Hz。在相同的载波功率和接收信号带宽条件下,当本振太赫兹波功率大于−7 dBm时,外差混频接收的信噪比优于直接检波的信噪比。当本振功率大于0 dBm时,外差混频接收机表现出优良的解调特性,其信噪比高出直接检波接收机的信噪比10 dB以上。
氮化镓 太赫兹无线通信 太赫兹探测器 直接检波 外差混频 gallium nitride terahertz wireless communication terahertz detector homodyne heterodyne 
红外与激光工程
2021, 50(5): 20210202
作者单位
摘要
东南大学 电子科学与工程学院 信息显示与可视化国际合作实验室,江苏 南京 210096
太赫兹技术在无损检测、生物医学、工业检查、环境监测、局域通信和**安全等领域具有广阔的应用前景。太赫兹系统中太赫兹探测器是其核心器件,其性能决定了太赫兹系统的应用市场,是推动太赫兹技术进一步发展的重要研究方向之一。但是,太赫兹波段较低的光子能量使得实现高速、灵敏的太赫兹探测颇有挑战。随着纳米技术和新材料制备技术的进步,低维材料的高迁移率、宽响应频带等性能为太赫兹探测器提供了新的机遇,低维材料太赫兹探测器得到广泛关注,其主要优势是高灵敏度、宽频带和低噪声,在近年来取得了显著的研究进展。虽然太赫兹探测器已经取得突破性发展,但各类太赫兹探测器仍然存在一些问题。在此背景下,文中从太赫兹探测器的分类出发,简要介绍了测辐射热计、热释电探测器、等离子体共振探测器和热载流子调控探测器的物理机制以及最新研究进展,并展望了未来低维材料太赫兹探测器的发展方向。
太赫兹探测器 低维材料 研究进展 terahertz detector low dimensional materials research progress 
红外与激光工程
2021, 50(1): 20211015
作者单位
摘要
中电科仪器仪表有限公司, 山东青岛266555
针对自由空间和波导传输太赫兹辐射功率兼容测试的需求,开展了光敏面直径为10 mm的多功能太赫兹热释电探测器的相关研究。通过有限元分析及热电耦合仿真设计,建立了敏感元件由100 m 厚的钽酸锂(LiTaO3)晶片和碳纳米管吸收层组成的太赫兹热释电探测器模型;采用优化的精确减薄抛光和剥离等关键工艺,重点攻克了采用大晶片多阵列方式制作LiTaO3基太赫兹热释电探测器敏感元件的工艺难题,并完成了太赫兹热释电探测器的研制。在设定条件下,该探测器的响应度为371.8 V/W,噪声等效功率为0.34 nW/Hz1/2。实验结果表明,设计并制作的太赫兹热释电探测器的集成度高、响应度良好、噪声等效功率低,能够有效解决大光斑太赫兹光束功率测试问题。
钽酸锂 太赫兹探测器 大晶片多阵列 精确减薄 LiTaO3 terahertz detector large wafer and multi-array precise thinning 
红外
2020, 41(4): 14
作者单位
摘要
1 南京邮电大学电子与光学工程学院 微电子学院, 江苏 南京 210023
2 南京大学固体微结构物理国家重点实验室, 江苏 南京 210093
3 南京大学智能光传感与调控技术教育部重点实验室, 江苏 南京 210093
设计一种三维多孔石墨烯(3DPG)辅助胆甾相液晶胶囊(CLCM)的新型功率探测器,用于测量高强度THz波。3DPG在频率为0.5~1.5 THz时具有超过97%的高吸收率。利用温度超灵敏CLCM的热色特性,对稳态下的THz功率进行可视化定量研究,THz功率密度高达2.77×10 2 mW/cm 2,最低探测功率仅为0.009 mW。进一步研究发现,3DPG上溅射少量金纳米颗粒后,THz功率与CLCM的Hue值呈线性关系。该可视化探测器结构简单、便携、成本低廉、高效实用,可应用于THz系统的对准、THz波的光束分析及THz成像和传感中。
探测器 胆甾相液晶胶囊 三维多孔石墨烯 太赫兹探测器 可视化探测 
光学学报
2020, 40(17): 1704002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!