作者单位
摘要
南昌航空大学 材料科学与工程学院, 南昌 330063
光催化被广泛用于去除水中的难降解有机污染物, 但是由于光生电子和空穴的复合率高, 抑制了半导体光催化剂的催化活性。本研究通过简便的溶剂热法成功制备了一种BiOBr/ZnMoO4复合材料。通过结构分析、原位XPS、功函数测试、自由基捕获及电子顺磁共振(ESR)实验等证实了BiOBr/ZnMoO4复合材料形成了S型异质结。实验结果表明, 适当ZnMoO4含量的BiOBr/ZnMoO4异质结可以显著提高BiOBr的光催化性能。与纯BiOBr、ZnMoO4相比, 质量分数15% BiOBr/ZnMoO4在可见光下表现出最佳的光催化活性, 双酚A的光催化降解率达到85.3% (90 min), 环丙沙星的光降解速率常数分别是BiOBr的2.6倍和ZnMoO4的484倍。这可归因于BiOBr和ZnMoO4之间形成了紧密的界面结合和S型异质结, 使得光生载流子可以实现有效的空间分离和转移。这项工作为定向合成Bi基S型异质结复合光催化材料提供了一种简便有效的方法, 对进一步理解Bi基多元异质结光催化材料的构效关系提供了新的理论和实验基础。
S型异质结 内建电场 BiOBr ZnMoO4 光催化 S-scheme heterojunction internal electric field BiOBr ZnMoO4 photocatalysis 
无机材料学报
2023, 38(1): 62
作者单位
摘要
1 中北大学化学与化工学院, 太原 030051
2 中国环境科学研究院, 北京 100012
3 太原理工大学环境科学与工程学院, 太原 030024
国家高度重视新污染物治理, 抗生素作为重点管控新污染物, 其去除技术受到广泛关注, 基于光催化降解抗生素的水处理技术成为研究热点。采用水热法制备了WO3, 并采用室温沉淀法成功构建了S型异质结BiOBr/WO3光催化剂。与BiOBr和WO3相比, S型异质结的形成提高了光催化活性, 降低了光生电子空穴对复合率, 其中质量分数为20%的BiOBr/WO3复合材料光催化性能最好, 在120 min内对环丙沙星的降解率可达94.93%。电子自旋共振和自由基捕获实验表明·O2-是光催化降解中的主要活性组分。高效液相色谱-质谱联用仪检测结果表明降解过程中产生了6种中间体, 并最终矿化为CO2、H2O和其他无机离子。
三氧化钨 溴氧化铋 环丙沙星 光催化 S型异质结 tungsten trioxide bismuth oxybromide ciprofloxacin photocatalytic S-scheme heterojunction 
硅酸盐学报
2023, 51(4): 1049
作者单位
摘要
1 武汉理工大学, 材料复合新技术国家重点实验室, 武汉 430070
2 中国地质大学(武汉), 材料与化学学院太阳燃料实验室, 武汉 430074
光催化反应可将太阳能转化为可储存的化学能源, 被认为是缓解能源危机和解决环境问题的有效途径之一。然而, 由于光生载流子低的转移和分离效率, 实际的光化学转换效率提升受到了限制。新兴的S型异质结光催化剂由于其在空间上实现了光生载流子的有效转移分离并展现出强的氧化还原能力, 在太阳燃料制备和环境治理领域受到了广泛关注和研究。本文综述了S型异质结光催化剂的发展历程和设计原理、光生载流子转移机制以及在能源和环境等领域的应用。最后, 提出了S型异质结光催化剂的发展前景和面临的挑战。
光催化反应 太阳能 异质结 设计原则 电荷转移 photocatalytic reactions solar energy scheme heterojunction design principles charge transfer 
硅酸盐学报
2023, 51(1): 73
作者单位
摘要
1 1.新疆师范大学 化学化工学院, 乌鲁木齐 830054
2 2.新疆师范大学 新疆储能与光电催化材料重点实验室, 乌鲁木齐 830054
S型异质结被广泛应用于光解水产氢和解决环境污染问题。本研究通过简单的水热法制备了单晶WO3/水热处理后的红磷(HRP)复合材料。XPS和EPR等表征结果证实单晶WO3/HRP复合材料形成了S型异质结。5%WO3/HRP异质结复合物在可见光下展现出最佳的光催化活性, 在4 min内对罗丹明B(RhB)的降解率高达97.6%。此外, 制氢速率可以达到870.69 μmol·h-1·g-1, 是纯HRP的3.62倍。这可归功于单晶WO3和HRP之间形成紧密的S型异质结, 使其光生载流子快速分离并提高氧化还原能力。本研究制备的RP基光催化剂为解决日益增长的清洁新能源和饮用水需求提供了参考。
WO3 红磷 光解水产氢 S型异质结 WO3 red phosphorus photocatalytic hydrogen evolution S-scheme heterojunction 
无机材料学报
2022, 38(6): 701
作者单位
摘要
光催化降解水体中的有机污染物具有广阔的应用前景。本研究以CoFe1.95Sm0.05O4作为载体, 通过原位沉积法和光还原法制备了Z型异质结Ag2S/Ag/CoFe1.95Sm0.05O4, 采用不同表征手段对样品的微观形貌、物相结构、光学和磁学性能进行表征分析。Ag2S/Ag/CoFe1.95Sm0.05O4复合物催化活性最高, 其光催化降解动力学常数(k)分别是Ag2S/Ag, Ag2S和CoFe1.95Sm0.05O4的2.96, 3.71和8.24倍。引入CoFe1.95Sm0.05O4可以有效地促进Ag2S/Ag中光生载流子的分离效率。?O2-和 ?OH-是光催化过程中的主要活性物。此外, 在光催化反应后, 外加磁场可以将制备的Ag2S/Ag/CoFe1.95Sm0.05O4复合材料快速从溶液中分离出来。循环降解实验显示, Ag2S/Ag/CoFe1.95Sm0.05O4复合材料在光降解过程中具有稳定的降解能力和晶体结构。本研究为进一步开发高效、窄带隙和磁性的光催化剂提供了有效的解决思路。
Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结 光催化降解 回收 Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme heterojunction photocatalytic degradation recycling 
无机材料学报
2022, 37(12): 1329
作者单位
摘要
中南大学 材料科学与工程学院, 长沙 410083
利用光催化技术将CO2转化为燃料有望解决能源危机和温室效应。Zn1-2x(CuGa)xGa2S4具有可见光响应及较高的导带电势, 从热力学上看是较为理想的CO2还原材料, 但是其光催化CO2还原活性仍然较低, 亟待从动力学角度提高其活性。本研究采用Zn0.4(CuGa)0.3Ga2S4与不同比例的CdS纳米颗粒复合, 制备了Zn0.4(CuGa)0.3Ga2S4/CdS异质结半导体材料。通过材料表征证明CdS在Zn0.4(CuGa)0.3Ga2S4微米颗粒上均匀生长并形成了全固态Z型异质结的复合结构。这种结构有效抑制了电子空穴对的复合, 保持了较高的还原电势, 有利于提高光催化性能。在溶液体系中, 所制备的Zn0.4(CuGa)0.3Ga2S4/CdS能够有效地将CO2光催化还原为CO。研究表明, 当Zn0.4(CuGa)0.3Ga2S4与CdS的摩尔比为2 : 1时, 样品的光催化活性达到最优, 是Zn0.4(CuGa)0.3Ga2S4材料的1.7倍, CdS材料的1.6倍。本工作通过构造异质结构, 提高了Zn0.4(CuGa)0.3Ga2S4半导体材料的光催化CO2还原活性, 对人工光合成材料的设计与制备具有较大的参考价值。
光催化 Z型异质结 二氧化碳还原 硫化物 photocatalysis Z-scheme heterojunction carbon dioxide reduction sulfide 
无机材料学报
2022, 37(1): 15
作者单位
摘要
1 天津工业大学 环境科学与工程学院
2 天津工业大学 化学化工学院, 天津 300389
Z-型光催化剂可以有效增强电荷分离, 从而改善光催化剂的活性。采用浸渍-煅烧和水热法两步制备Z型BiVO4/GO/g-C3N4光催化剂, 并用不同手段对其进行表征。在BiVO4/GO/g-C3N4的光催化过程中, GO纳米片作为BiVO4和g-C3N4之间的快速传输通道, 可以抑制电子-空穴复合, 显著促进电荷分离, 提高三元异质结的氧化还原能力。与单组分或二元复合物相比, 该催化剂具有良好的光降解罗丹明B(RhB)的能力。在可见光照射下, 它能够在120 min内降解85% RhB, 空穴(h+)在反应中起主要作用。该工作为三元光催化剂体系提供了简单的制备方法, 其中g-C3N4通过GO与BiVO4偶联, 光催化活性显著提高。
BiVO4 g-C3N4 GO 三元催化剂 Z型异质结 BiVO4 g-C3N4 GO ternary photocatalyst Z-scheme heterojunction 
无机材料学报
2020, 35(7): 839

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!