作者单位
摘要
海南大学材料科学与工程学院, 南海海洋资源利用国家重点实验室, 海口 570228
以木棉、硼酸(HBO3)、尿素(CO(NH2)2)为原料, 在氨气(NH3)气氛下通过高温反应制备了硼氮共掺杂生物质炭材料, 利用聚乙烯亚胺(PEI)对硼碳氮(BCN)材料进行处理, 得到PEI-BCN材料, 并研究了该材料的吸附性能。结果表明: 当反应温度为1 100 ℃时, 制备得到的BCN材料为多孔结构, 其平均孔径为11.0 nm; BCN材料的吸附能力优于生物质炭, 经PEI改性处理后, BCN材料的吸附性能得到大幅提高, 其对有机染料孔雀石绿(MG)的吸附量高达710.0 mg/g; PEI-BCN材料的吸附与准一级吸附动力学模型吻合, 其对MG的吸附属于Langmuir等温吸附。
硼碳氮材料 生物质炭 木棉 聚乙烯亚胺 高温反应 吸附 孔雀石绿 BCN material biochar kapok polythyleneimine high temperature reaction adsorption malachite green 
硅酸盐通报
2023, 42(6): 2242
作者单位
摘要
浙江科技学院土木与建筑工程学院,杭州 310000
将生物炭用于水泥基材料可改善其基本性能,实现固碳的同时丰富了生物质固废资源化利用的途径。为研究山核桃蒲壳生物炭作为细骨料对水泥砂浆性能的影响规律及作用机理,将其以不同体积分数替代细骨料制备砂浆,对水泥砂浆拌合物的流动性、硬化砂浆的微观结构、基本力学性能及保温性能展开试验研究。结果表明:1)拌和时添加25%(占生物炭质量分数)的水作为附加用水,拌合物的工作性最稳定。2)生物炭25%(体积分数)替代砂时,骨料周围可形成良好的浆体握裹及界面过渡区,使砂浆试件抗折强度和抗压强度最高;随着砂替代率的增加,砂浆试件的强度均逐级减小。3)随着生物炭用量的增加,水泥砂浆导热系数呈显著的逐级下降趋势,生物炭的原生孔隙延长了热传导路径,并发挥了慢导热作用,添加生物炭可显著提高水泥砂浆的保温隔热性能。
山核桃蒲壳生物炭 砂浆 细骨料 工作性能 强度 保温性能 carya cathayensis peels biochar mortar fine aggregate working property strength thermal insulation property 
硅酸盐通报
2023, 42(9): 3186
作者单位
摘要
以氮、磷污染物导致的水体富营养化问题在我国普遍存在。本研究将普鲁士蓝与改性生物炭相结合, 得到普鲁士蓝/生物炭复合材料。通过多种表征手段研究了复合材料的形貌及结构并通过模拟废水测试了其吸附性能。结果表明, 复合材料在pH 8时达到最佳吸附效果, 氨氮去除率在95%以上, 最大吸附量为24.4 mg/g, 比未改性生物碳提高101.3%。对复合材料吸附机理的研究表明, 复合材料通过普鲁士蓝对氨氮的配位作用对多组分污水中氨氮实现了选择性吸附。此外, 复合材料在外加H2O2溶液的条件下可形成芬顿氧化体系, 能实现同步催化降解有机污染物和促进氨氮的吸附, 因此有望在多组分富营养化污水治理中投入实际应用。
生物炭材料 普鲁士蓝纳米粒子 氨氮吸附 芬顿氧化反应 biochar material prussian blue nanoparticles ammonia nitrogen adsorption Fenton oxidation process 
无机材料学报
2023, 38(2): 205
作者单位
摘要
1 1.中国石油大学(华东) 新能源学院, 青岛 266580
2 2.山东能源集团有限公司新能源事业部, 济宁 273500
3 3.西安交通大学 材料科学与工程学院, 西安 710049
碳材料以其低成本、良好的化学稳定性和热稳定性等优异特性被广泛应用于各种催化反应中。本研究利用来源广泛的天然脱脂棉为原材料, 通过原位气相掺杂的方法制备了N掺杂、B掺杂、BN共掺杂的生物质碳材料, 并将其应用在丙烷直接脱氢制丙烯反应中。研究发现, 与未掺杂的生物质碳相比, 杂原子掺杂的生物质碳均表现出更高的丙烷转化率和丙烯选择性, 而且N、B单独掺杂的生物质碳材料催化性能优于BN共掺杂的生物质碳材料, 其中N掺杂的生物质碳具有最优催化性能: 在600 ℃反应温度下, 丙烷转化率达到17.6%, 总烯烃收率达14.8%, 且经过12 h的脱氢反应后, 催化剂性能无明显的衰减。通过对这些碳材料的化学结构和催化性能的对比分析, 发现N掺杂和B掺杂使得碳材料表面的大量C-O基团转变为具有丙烷脱氢活性的C=O基团, 抑制反应过程中的C-C键断裂, 从而提高目标产物丙烯的选择性。生物质碳材料成本低廉且来源广泛, 以其作为催化剂可以极大地推动丙烷脱氢工业的发展。
生物质碳 杂原子掺杂 直接脱氢 丙烷 丙烯 biochar heteroatom-doping direct dehydrogenation propane propylene 
无机材料学报
2022, 37(10): 1058
作者单位
摘要
1 新疆农业大学资源与环境学院, 新疆 乌鲁木齐 830052
2 新疆农业科学院土壤肥料与农业节水研究所, 新疆 乌鲁木齐 830091
通过磷酸(H3PO4)和焦磷酸(H4P2O7)对生物炭改性能够使其更适于农业应用。 探明H3PO4和H4P2O7改性生物炭的P赋存形态与结合方式, 将有助于揭示其表面P的生物有效性。 以麦秆生物炭(WBC)与棉秆生物炭(CBC)为原料, 分别通过H3PO4和H4P2O7制备了H3PO4改性生物炭(P-WBC和P-CBC)和H4P2O7改性生物炭(PA-WBC和PA-CBC)。 利用拉曼光谱(Raman)与扫描电镜能谱(SEM-EDS)对改性生物炭结构与P分布变化进行表征, 采用傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)探究改性生物炭表面P结合方式, 并结合Hedley磷分级方法与可见分光光度法, 定量分析改性前后生物炭中P形态及含量变化。 结果表明, H3PO4和H4P2O7改性后生物炭IG/ID值增大, 石墨化结构增强, 形成了含P颗粒状结构。 H3PO4和H4P2O7改性促进了生物炭表面羧基(—COOH)、 P—O—P和P—H等酸性官能团与含P基团的形成, 且H3PO4改性生物炭和H4P2O7改性生物炭表面官能团种类相似。 XPS结果显示, 与WBC和CBC相比, 改性处理中的O(1s)峰相对含量显著增加了13.15%~32.44%, P(2s)峰相对含量显著增加了18.54%~27.02%(p<0.05)。 反褶积分峰将P(2s)与O(1s)分为C—P—O, C—O—P, O=P—O C=O与(或) P=O C—O—C与(或)P—O—C和P—O—P六类。 较H3PO4改性而言, H4P2O7改性能够促进更多C—O—P, O=P—O C—O—C与(或)P—O—C和P—O—P键的形成。 改性也使得生物炭中总P含量显著增加, 且PA-WBC和PA-CBC中P含量显著高于P-WBC和P-CBC。 与WBC和CBC相比, 改性处理中活性P含量显著提高2.36~14.77 g·kg-1, 稳定态P含量显著降低0.06~0.17 g·kg-1(p<0.05)。 与P-WBC和P-CBC相比, PA-WBC和PA-CBC的活性P、 中等活性P分别显著增加了5.27~15.66和0.53~0.64 g·kg-1, 稳定态P含量减少了0.03~0.34 g·kg-1(p<0.05)。 H3PO4和H4P2O7改性改变了P在生物炭表面的结合方式, 同时增加了P的活性。 H3PO4和H4P2O7改性生物炭间, 不同形态P含量和结合方式的差异对进一步探究P的生物有效性具有重要意义。
生物炭 改性 磷形态 光谱分析 Biochar Modification Phosphorus species Spectral analysis 
光谱学与光谱分析
2022, 42(10): 3084
韦思业 1,*范行程 3毛翰 1操涛 4[ ... ]谢越 3
作者单位
摘要
1 生态环境部华南环境科学研究所, 广东 广州 510530
3 安徽科技学院资源与环境学院, 安徽 凤阳 233100
4 中国科学院广州地球化学研究所有机地球化学国家重点实验室, 广东 广州 510640
生物炭(BC)施加至土壤后会释放出溶解性有机质(DOM), 能够改变土壤DOM的含量和化学性质, 进而对土壤DOM的环境行为产生重要影响。 BC DOM的分子组成和结构决定了其复杂的环境行为, 然而目前针对其分子量组分的研究几乎为空白。 本研究以稻秆和猪粪为原料, 在300, 400和500 ℃分别制备生物炭, 利用纯水萃取-过滤得到DOM, 采用超滤方法将其分离为<1, 1~5和>5 kDa(千道尔顿)组分。 通过溶解性有机碳(DOC)、 紫外-可见光光谱(UV-Vis)、 三维荧光光光谱结合区域体积积分(EEM-FRI)系统解析了BC DOM中不同分子量级组分的含量和光谱特征。 结果显示, 不同裂解温度下稻秆和猪粪BC DOM的DOC在<1, 1~5和>5 kDa组分中的分布分别为42%~60%, 16%~23%和23~29%, α254的分布范围分别为4%~27%, 8%~49%和26%~81%。 表明BC DOM的DOC主要分布在<1 kDa组分, 而发色物质主要分布在>5 kDa组分。 400和500 ℃下BC DOM中>5和1~5 kDa组分的分子量和芳香度明显高于300 ℃下。 相比而言, 稻秆BC DOM中>5 kDa组分比猪粪的含有更多的芳香族结构, 而猪粪BC DOM中<1 kDa组分的芳香度却高于稻秆。 稻秆和猪粪BC DOM中各级分子量组分均具有相似的EEM光谱特征, 表明BC DOM是一种连续有机体系。 稻秆和猪粪BC DOM的分子量级组分分别以类富里酸和低激发色氨酸荧光物质组成为主。 BC DOM中<1, 1~5和>5 kDa组分的FI和BIX基本呈现依次降低趋势, 而HIX值则呈现出依次升高的趋势, 结果表明BC DOM中高分子量组分富集了较多的具有高芳香性和高腐殖化程度的有机组分。 研究结果将进一步提升对BC DOM的分子量组成和结构特征的认识, 同时可以为准确评估BC DOM的环境行为提供重要的基础数据。
生物炭 溶解性有机物 超滤 分子量 光谱特征 Biochar Dissolved organic matter Ultrafiltration Molecular weight Spectra characteristics 
光谱学与光谱分析
2022, 42(6): 1809
作者单位
摘要
1 北方民族大学材料科学与工程学院, 银川 750021
2 碳基先进陶瓷制备技术国家地方联合工程研究中心, 银川 750021
3 粉体材料与特种陶瓷省部共建重点实验室, 银川 750021
生物质炭是指原料在部分缺氧或绝氧的条件通过特殊方法处理后产生的高度芳香化、高碳和高稳定性的固体产物。同一植物不同部位制备的生物质炭的性能往往具有较大差异, 本论文以胡麻为研究对象, 以KOH、H3PO4为活化剂, 对胡麻不同部位(杆、皮、根)进行活化, 采用水热炭化法、活化法、炭化-活化法制备生物质炭材料, 将产物用于吸附溶液中的罗丹明B(RhB)和亚甲基蓝(MB), 进一步评价其吸附活性。利用XRD、SEM、TG-DSC、N2-BET、UV-Vis等对产物的性能进行分析, 探究炭化温度、活化温度以及活化剂种类对生物质炭性能的影响。比较不同条件下制备生物质炭材料的微观形貌、比表面积、孔径以及产率。以胡麻杆为原材料, 磷酸为活化剂, 炭化温度200 ℃, 活化温度820 ℃时, 制备的生物质炭孔径分布均匀、数量较多、断面呈管状, 且其表面积最高, 可达1 247.63 m2/g。该产物对RhB和MB都表现出了良好的吸附能力, 在接近1 h时, 10 mg/L的RhB溶液就已经全部褪色, 吸附率高达100%。
胡麻杆 生物质炭 活化剂 吸附 炭化温度 磷酸 炭化-活化法 hemp stem biochar activator adsorption carbonization temperature phosphoric acid carbonization-activation method 
硅酸盐通报
2022, 41(4): 1464
周宇 1,2,*陈晓娟 1,3卢开红 1陈杰明 4[ ... ]张兴华 2
作者单位
摘要
1 佛山科学技术学院食品科学与工程学院, 佛山 528000
2 中国科学院广州能源研究所, 广州 510650
3 佛山科学技术学院环境与化学工程学院, 佛山 528000
4 佛山科学技术学院交通与土木建筑学院, 佛山 528000
生物质炭具有原材料来源广泛、比表面积大、孔隙结构丰富、表面官能团易调控等优势, 在有机污染废水处理领域展现良好的应用前景。然而, 生物质炭的不同原材料、制备方法、改性措施等在很大程度上影响着生物质炭的物化性质, 从而对有机污染废水表现出不同的性能和作用机制。本文主要基于生物质炭结构特性, 针对其制备方法、改性手段和措施展开叙述, 并总结了生物质炭用于有机污染废水处理的现状和未来发展机遇。
生物质炭 功能改性 污水处理 有机污染物 吸附 催化 降解 biochar functional modification wastewater treatment organic pollutant adsorption catalysis degradation 
人工晶体学报
2021, 50(12): 2389
肖瑶 1吴中杰 2崔美 3苏荣欣 3,4[ ... ]黄仁亮 4,*
作者单位
摘要
1 1.天津大学 环境科学与工程学院, 天津300072
2 2.国网山东省电力公司电力科学研究院, 济南250002
3 3.天津大学 化工学院, 天津300072
4 4.天津大学 海洋科学与技术学院, 天津 300072
重金属污染具有高毒性、持久存留和生物积累等特性, 严重危害人体健康和生态安全。本研究通过氯化钙对玉米芯残渣和膨润土混合物进行碱改性, 在无氧条件下高温煅烧制备了一种碱改性生物炭-膨润土复合物(CaO-Bent-CB)。该复合物的比表面积高, 达到441.1 m2/g, 明显高于直接煅烧制备的生物碳(132.7 m2/g)和碱改性生物炭(177.2 m2/g)。进一步评价了该复合物对水中铅离子吸附性能, 结果表明在水中铅离子浓度为120 mg/L, 膨润土与玉米芯残渣质量比为1:5, 用量为1 g/L条件下, 吸附6 h后铅离子去除率达98%, 吸附量为109.6 mg/g, 均高于生物炭(13.4 mg/g)、膨润土(72.9 mg/g)和碱改性生物炭(86.9 mg/g)。此外, 采用CaO-Bent-CB对铅离子污染土壤进行稳定化处理, 当土壤中铅离子浓度为2200 mg/kg, CaO-Bent-CB用量为土壤干重的8%时, 在pH=3.2的硫酸-硝酸浸提液中浸出12 h, 酸浸出铅离子浓度低至4.5 mg/L, 低于危险废物鉴别标准值(5 mg/L)。上述研究结果表明这种生物炭-膨润土共改性复合物在重金属污染水体和土壤修复中具有很好的应用前景。
玉米芯残渣 生物炭 粘土 重金属 土壤修复 corncob residue biochar clay heavy metal soil remediation 
无机材料学报
2021, 36(10): 1083
作者单位
摘要
1 江苏大学农业工程学院, 江苏 镇江 212013
2 石河子大学机械电气工程学院, 新疆 石河子 832003
生物炭还田能够提供大量植物可吸收利用的有效态磷。 采用激光诱导击穿光谱(LIBS)技术对秸秆基生物炭中水溶态磷(P)元素进行定量检测研究。 首先选用疏水性的聚乙烯平板作为液固转换基底以降低液滴干燥后基底表面严重的“咖啡环效应”。 为解决生物炭中水溶态P元素LIBS信号低灵敏度问题, 研究并探讨了3种粒径金纳米颗粒(Au nanoparticles, AuNPs)对P元素4条分析谱线的信号增强性能。 结果表明大粒径(73 nm和105 nm)的金纳米颗粒更容易发生聚集效应, 并且光谱信噪比较大。 进一步地比较分析了3种粒径金纳米颗粒增强后P 元素的单变量校正曲线模型效果, 45 nm的金纳米颗粒信号增强后的单变量校正曲线模型效果均最优。 将该粒径金纳米颗粒增强后的4条分析谱线展宽波段光谱用于弹性网络-支持向量回归(EN-SVR)模型构建, 其最优模型的预测平均误差(ARP)和预测相对标准偏差(RSDP)分别为5.40%和11.09%。 研究结果表明纳米颗粒增强激光诱导击穿光谱(NELIBS)结合EN-SVR模型可以用于生物炭中水溶态P元素精确定量检测。
激光诱导击穿光谱 金纳米颗粒 生物炭 磷元素 弹性网络-支持向量回归 Laser induced breakdown spectroscopy Au nanoparticles Biochar Phosphorus ElasticNet-Support vector regression 
光谱学与光谱分析
2021, 41(7): 2301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!