作者单位
摘要
1 北方民族大学 计算机科学与工程学院, 宁夏银川75002
2 西安电子科技大学 电子工程学院,陕西西安710071
由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型(Perturbed Linear Mixing Model,PLMM)在解混的过程中可以减轻端元变异性造成的不利影响,但是对缩放效应造成的变异性的处理能力较弱。为此,本文改进了扰动线性混合模型,引入了尺度因子以处理缩放效应造成的变异性,并结合超像素分割算法划分局部同质区,然后设计出基于局部同质区共享端元变异性的解混算法(Shared Endmember Variability in Unmixing,SEVU)。与扰动线性混合模型,扩展线性混合模型(Extended Linear Mixing Model,ELMM)等算法相比,所提SEVU算法在合成数据集上平均端元光谱角距离(mean Spectral Angle Distance, mSAD)和丰度均方根误差(abundance Root Mean Square Error, aRMSE)最优,分别为0.085 5和0.056 2;在Jasper Ridge和Cuprite真实数据集上mSAD是最优的,分别为0.060 3和0.100 3。在合成数据集和两个实测数据集上的实验结果验证了SEVU算法的有效性。
高光谱图像 混合像元分解 光谱变异性 扰动线性混合模型 局部同质区 hyperspectral image unmixing spectral variability perturbed linear mixing model local homogeneous region 
光学 精密工程
2024, 32(4): 578
作者单位
摘要
西安理工大学机械与精密仪器工程学院激光雷达大气遥感研究中心,陕西 西安 710048
以我国高光谱遥感卫星——环境1号卫星为例,开展结合NCEP再分析资料辅助优化的6S 大气校正方法的分析。首先,考虑到高光谱图像缺少标准反射率产品的问题,利用最优化估计方法构建高光谱反射率曲线,并作为标准曲线,用于大气校正结果的验证。其次,基于6S大气校正理论,开展了大气校正的敏感性分析,确定了气溶胶光学厚度的敏感因素以及气溶胶类型、大气模式和大气温湿度对大气校正系数的敏感性。在此基础上,提出了NCEP再分析资料辅助优化的6S大气校正方法,利用NCEP再分析资料提供的大气温湿度廓线、水平能见度反演的550 nm气溶胶光学厚度等数据资料,优化6S模式的输入参数,得到准确的大气校正系数XaXbXc,获得大气校正后的不同地物反射光谱曲线。最后,选取西安作为试验区,以水体为例,进行波谱曲线对比,利用标准曲线对校正结果进行精度评价。对比分析结果表明,NCEP再分析资料辅助优化的6S模式校正的地面反射率结果明显优于6S的大气校正结果,与标准曲线具有一致的反射率变化趋势,二者的相关系数达到0.8596,标准差低于0.0685,各波段地面反射率逐像元误差的平均值和标准差接近0.02,反映了利用NCEP辅助数据优化的6S模式对大气校正有着明显的改善作用,可提高6S 大气校正的地物反射率反演精度。
大气光学 高光谱图像 大气校正 6S 气溶胶 NCEP 
光学学报
2024, 44(6): 0601006
汪菲菲 1,3赵慧洁 1,2,3李娜 1,2,3,*李思远 4蔡昱 5
作者单位
摘要
1 北京航空航天大学 仪器科学与光电工程学院 精密光机电一体化技术教育部重点实验室,北京 100191
2 北京航空航天大学 人工智能研究院,北京 100191
3 北京航空航天大学 “空天光学-微波一体化精准智能感知”工信部重点实验室,北京 100191
4 中国科学院西安光学精密机械研究所 光谱成像技术重点实验室,西安 710119
5 中国运载火箭技术研究院,北京 100076
在高光谱图像分类任务中,引入注意力改变提取到的光谱和空间特征权重,有效突出重要特征,提高分类准确率。将注意力机制、残差网络和特征提取模块集成到分类框架中,引入中心区域光谱注意力机制,在避免干扰像素对波段权重影响的同时,利用周围像素增强中心像素波段,增强光谱特征的鲁棒性进而提取有效的光谱特征。并在此基础上提出了光谱-空间注意力残差网络,该网络可以从高光谱图像中连续提取到丰富的光谱特征和空间特征,并通过残差网络连接特征提取模块,缓解了精度下降问题,保证网络良好的分类性能。在4个公开数据集上,所提出的分类算法和其他算法相比,各项指标均达到最优。
光谱-空间特征 残差网络 高光谱分类 光谱注意力机制 空间注意力机制 Spectral-spatial feature Residual network Hyperspectral image classification Spectral attention mechanism Spatial attention mechanism 
光子学报
2023, 52(12): 1210002
作者单位
摘要
1 中科技术物理苏州研究院,江苏 苏州215000
2 中科技术物理苏州研究院,江苏 苏州215000中国科学院上海技术物理研究所,上海200083中国科学院红外探测与成像技术重点实验室,上海200083
大量的训练样本可有效缓解模型过拟合,从而提高分类效果。在初始标记样本较少的情况下,开展借助不同尺度的同质区快速扩增大量高精度训练样本的实验,并利用初始标记样本和扩增样本训练支持向量机(Support Vector Machine, SVM)分类器,实现对高光谱数据的有效分类。该方法在Pavia University、Salinas和Indian Pines三种高光谱数据上均能获得大量高精度的训练样本,分类精度分别达到99%、99%和97%以上。实验结果表明,扩增的大量伪标签样本可以有效训练SVM分类器,提高分类效果。
高光谱影像 半监督分类 多尺度同质区 训练样本扩增 图像分割 支持向量机 hyperspectral image semi-supervised classification multi-scale homogeneous regions training sample amplification image segmentation SVM 
红外
2023, 44(5): 0032
作者单位
摘要
1 河南科技大学农业装备工程学院, 河南 洛阳 471003 机械装备先进制造河南省协同创新中心, 河南 洛阳 471003
2 河南科技大学农业装备工程学院, 河南 洛阳 471003
3 河南科技大学农学院/牡丹学院, 河南 洛阳 471023
4 河南科技大学物理工程学院, 河南 洛阳 471023
玉米是我国重要粮食作物之一, 在我国广泛种植, 筛选优良的玉米品种是农业生产和育种的关键, 但市场上玉米品种繁多, 如何快速准确高效鉴别玉米品种从而实现玉米高产高收亟待解决。 提出了基于高光谱图像技术的极限学习机(ELM)鉴别模型, 以期解决玉米品种鉴别问题。 以八个品种玉米种子作为研究对象, 试验样本共480个, 按2∶1比例划分为训练集和测试集, 分别为320个和160个。 利用高光谱图像采集系统获取935.61~1 720.23 nm范围内的玉米种子图像, 黑白校正后选取胚芽部位大小为10×10 pixel的感兴趣区域(ROI), 提取该区域内平均光谱作为原始光谱数据。 因原始光谱两端噪声较大, 有效信息较少, 为增强信噪比, 截取949~1 700 nm范围内的玉米种子光谱波段作为有效波段进行分析。 由于数据采集过程中受无关信息干扰较强影响建模效果, 故对去噪后的光谱波段信息进行SG平滑(Savitzky-Golay smoothing)预处理, 将平滑点数设置为3, 在SG平滑基础上进行最大归一化(MN)预处理。 预处理后分别采用竞争性自适应重加权算法(CARS)、 连续投影算法(SPA)单一提取和CARS+SPA、 CARS-SPA组合筛选方法提取特征波长, 以特征波长反射率作为输入矩阵X, 预设样本类别1、 2、 3、 4、 5、 6、 7、 8作为输出矩阵Y, 利用极限学习机分别建立(SG+MN)-ELM、 (SG+MN)-CARS-ELM、 (SG+MN)-SPA-ELM、 (SG+MN)-(CARS+SPA)-ELM、 (SG+MN)-(CARS-SPA)-ELM五种玉米品种定性鉴别模型。 试验结果表明: (SG+MN)-(CARS-SPA)-ELM模型较其他四者鉴别效果最佳, 训练集和测试集平均鉴别准确率均为98.13%, 表明CARS-SPA二次筛选的特征波长变量更敏感, 能够代表所有波长信息, 且极限学习机模型有较好的定性鉴别性能, 可实现对玉米品种的鉴别。 该研究为玉米种子及其他农作物种子快速准确鉴别提供了新思路和新方法。
高光谱图像技术 玉米 品种鉴别 极限学习机 组合筛选 Hyperspectral image Maize Varieties identification Extreme learning machine Combination screening method 
光谱学与光谱分析
2023, 43(9): 2928
作者单位
摘要
内蒙古农业大学计算机与信息工程学院, 内蒙古 呼和浩特 010018
近年来, 基于深度学习的模型在高光谱图像(HSI)分类方面效果显著。 针对小样本数据基于深度学习的高光谱图像分类方法分类精度不高的问题, 提出一种融合卷积长短期记忆(ConvLSTM)和多注意力机制网络的高光谱图像分类方法。 该方法分三个分支: 光谱分支、 空间X分支和空间Y分支分别提取光谱特征、 空间X特征和空间Y特征, 并将三个方向的特征融合进行高光谱图像分类。 由于ConvLSTM在学习有价值的特征和对光谱数据中的长期依赖关系建模方面表现出良好的性能, 所以在光谱分支中用了3个隐藏层、 卷积核大小为3×3、 通道分别为150、 100和60提取光谱信息。 在空间X分支和空间Y分支, 采用基于DenseNet和3D-CNN的Dense空间X块和Dense空间Y块分别提取空间X特征和空间Y特征。 为了增强特征提取, 在这三个分支中还分别引入了其特征方向的注意力机制, 针对信息丰富的光谱波段设计了光谱注意块, 信息丰富的像素点分别设计了空间X和空间Y注意块。 在三个公开的高光谱数据集上进行了实验, 即Indian Pines(IP)、 Pavia University(UP)和Salinas Valley(SV)数据集; 并对比了其他五种方法: 基于RBF径向核的支持向量机模型(SVM)、 更深更广的卷积神经网络模型(CDCNN)、 快速密集光谱-空间卷积网络模型(FDSSC)、 空谱残差网络模型(SSRN)、 双分支双注意力机制网络模型(DBDA)。 实验中, IP数据集上训练样本和验证样本的大小设为总样本的3%, UP和SV数据集上训练样本和验证样本的大小设为总样本的0.5%。 该方法和所有基于深度学习的方法, 批处理大小均设置为16, 优化器设为Adam, 学习率设置为0.000 5, 并动态调整学习率。 由于SVM直接利用光谱信息进行分类, 输入样本块像素大小为1×1, 其他基于深度学习方法的输入样本块像素均设置为9×9。 实验结果表明, 该方法能充分利用高光谱图像的光谱和空间特征, 在OA、 AA、 KAPPA等评价标准上均获得了更好的效果, 其中, 该方法的OA指标比次优的算法平均提高0.12%~2.04%。
高光谱图像分类 深度学习 卷积神经网络 注意力机制 Hyperspectral image classification Deep learning ConvLSTM ConvLSTM Convolutional neural network Attention mechanism 
光谱学与光谱分析
2023, 43(8): 2608
作者单位
摘要
1 中国科学院空天信息创新研究院, 北京 100101辽宁师范大学地理科学学院, 辽宁 大连 116029
2 辽宁师范大学地理科学学院, 辽宁 大连 116029
3 辽宁师范大学计算机与信息技术学院, 辽宁 大连 116081
4 辽宁师范大学计算机与信息技术学院, 辽宁 大连 116081辽宁师范大学地理科学学院, 辽宁 大连 116029
随着现代遥感技术的快速发展, 遥感影像变换检测技术受到重视并被应用到地理国情检测、 土地调查、 生态系统监测、 食品安全保障和**侦察等领域。 高光谱影像所具有的更精细的光谱分辨率以及多时相高光谱影像所提供的更加丰富和更为详细的光谱变化信息为进一步精细判断地表的变化提供了可能。 然而高光谱影像高复杂度的数据结构、 高维度的数据特征、 高冗余信息, 以及不同时相光谱信息对环境的敏感性极大地增加了多时相高光谱变化检测的难度。 文章以变化检测过程中所涉及的技术手段为主线, 首先从六个方面对多时相高光谱影像变化检测的研究动态及现状进行分析, 包括: (1) 基于高光谱影像间广义相似度度量的传统高光谱影像变化检测方法, 该类方法主要沿用了高光谱影像出现之前多光谱变化检测的技术路线; (2) 基于降维的高光谱影像变化检测方法, 该类方法主要为克服高光谱影像所具有的高维度、 高冗余等特性给变化检测带来的不良影响而展开; (3) 基于统计建模的高光谱影像变化检测方法, 该类方法通过对高光谱影像的统计特性和多维度相关性进行挖掘和建模来确定各像元的变化属性; (4) 基于分类方法的高光谱影像变化检测方法, 该类方法将图像的分类策略引入到变化检测过程中为获得“from-to”类型的变化信息提供保障; (5) 基于光谱解混的高光谱影像变化检测方法, 该类方法主要面对高光谱影像低空间分辨率所带来的混合像元问题如何提取精细的变化信息而展开; (6) 基于深度学习的高光谱影像变化检测方法, 该类方法通过将深度学习技术应用于多时相高光谱变化检测中而产生的一类新兴而具有发展前景的变化检测技术。 进一步, 对目前多时相高光谱影像变化检测中面临的挑战性问题进行了提炼和分析展望。
遥感 高光谱影像 变化检测 多时相 光谱变化 研究进展 Remote sensing Hyperspectral image Change detection Multitemporal Spectral change Research advance 
光谱学与光谱分析
2023, 43(8): 2354
作者单位
摘要
核工业北京地质研究院遥感信息与图像分析技术国家级重点实验室, 北京 100029
高分系列卫星的发射和无人机高光谱技术的发展, 高光谱可用数据进一步扩展。 为了提升高光谱数据的精细利用价值, 高光谱影像混合像元解混成为当前至关重要的任务。 随着人工智能技术的快速发展, 深度学习理论被引入遥感图像处理领域。 自编码网络具有较强的特征提取能力, 已经开始应用于高光谱影像解混方面。 以自编码网络为基础对其结构进行改进, 提出一种深度堆栈自编码网络(DSAE)用于高光谱图像解混研究。 该网络包含两个部分: 端元识别网络(EDSAE)和丰度求解的网络(ADSAE)。 首先, 通过添加批标准化处理、 稀疏约束、 “和为一”约束以及删除网络偏置项构建EDSAE网络, 开展非监督训练进行高光谱影像端元识别。 其次, 将获取的端元光谱数据依据HAPKE非线性混合模型和LINEAR线性混合模型开展数据增强, 生成多元混合的带有丰度标签的模拟高光谱数据集。 最后, 在堆栈自编码网络基础上, 设置最后一层自编码器的激活函数为Softmax函数, 构建监督训练网络ADSAE, 把模拟数据集作为训练数据, 高光谱影像作为测试数据, 求取真实高光谱影像的丰度矩阵。 对Samson、 Jasper Ridge和Urban公共的高光谱影像开展端元识别和丰度求解实验, 基于DSAE获得的结果与传统的N-FINDR、 VCA、 MVC-NMF方法以及目前已有深度学习的方法SNSA和EndNet取得的结果进行比较。 结果表明: 对3组真实的高光谱影像开展解混, DSAE方法在端元提取方面相比于其他5种方法, 具有最优精度; 在丰度求解方面, 基于HAPKE模型生成的模拟数据集, 利用ADSAE网络开展监督训练可以成功获得3组高光谱影像的丰度矩阵, 相比于LINEAR模型和FCLS方法, 均具有最优的丰度反演结果。 DSAE方法具有较好的稳定性和鲁棒性, 为高光谱影像定量研究提供了新的思路。
高光谱影像 深度堆栈自编码 端元识别 丰度求解 解混 Hyperspectral image Deep stacked autoencoders Endmember extraction Abundance estimation Unmixing 
光谱学与光谱分析
2023, 43(5): 1508
作者单位
摘要
1 北京跟踪与通信技术研究所,北京00094
2 西安工业大学,陕西西安71001
3 中国科学院 西安光学精密机械研究所,陕西西安710119
高光谱目标检测中背景信息的统计往往受到目标信息的干扰,而高光谱图像中存在的大量混合像元会进一步加深这一干扰。为了准确统计背景信息、显著降低目标像元对背景统计信息的干扰,提出了一种利用光谱解混合的目标检测算法,通过光谱解混合和目标相似性判断,获取目标端元对应丰度系数,并与光谱夹角系数相结合生成合理的背景加权系数,进行加权约束最小能量算子(CEM)目标检测,从而有效提高混合像元的背景信息统计准确度;利用目标端元对应丰度系数和光谱夹角系数生成初步的目标检测结果,与加权CEM目标检测结果相融合进行进一步优化,有效提高算法稳定性,同时再次提高目标检测精度。实验结果表明:对于模拟高光谱图像和真实高光谱图像,本文算法均得到了较好的目标检测效果,算法稳定性较强,且有效提高了目标检测精度,相比传统CEM算法、基于光谱角的加权CEM算法、归一化丰度系数作为目标结果,AUC值分别平均提高了0.071 2,0.031 2和0.015 0,在高光谱应用中具有较强的实用性。
高光谱图像 目标检测 光谱解混合 丰度 光谱角 hyperspectral image target detection hyperspectral unmixing abundance spectral angle 
光学 精密工程
2023, 31(21): 3156
作者单位
摘要
1 海军航空大学 航空作战勤务学院,山东 烟台 264000
2 海军航空大学 岸防兵学院,山东 烟台 264000
针对高光谱影像分类方法精度不足的问题,提出一种基于空间-频谱变换(Spectral-Spatial Transformer,SST)网络的高光谱影像分类方法。首先,将高光谱影像预处理为一维特征向量。然后,设计了具有光谱-空间注意力模块和池化残差模块的SST高光谱影像分类网络。本文所提出的分类方法在Indian Pines数据集和Pavia University数据集上的总体分类精度分别为98.67%和99.87%,表明此方法具有较高的分类精度,为高光谱影像分类及应用提供了一种新方案。
深度学习 高光谱影像 分类 遥感图像 deep learning hyperspectral image classification satellite imagery 
红外与毫米波学报
2023, 42(6): 824

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!