姚喆赫 1,2,3潘成颢 1,2,3迟一鸣 1,2,3陈健 1,2,3[ ... ]姚建华 1,2,3,*
作者单位
摘要
1 浙江工业大学激光先进制造研究院,浙江 杭州 310023
2 特种装备制造与先进加工技术教育部/浙江省重点实验室,浙江 杭州 310023
3 浙江工业大学机械工程学院,浙江 杭州 310023
超声复合激光制造技术通过施加外部超声以提升激光制造的加工能力与质量,已成为国内外研究热点。分析了当前超声复合激光制造技术涉及的耦合机理,并综述了超声在激光制造过程中的作用机制。根据超声振动模块与基体的接触模式将超声引入方式划分为固定接触式、移动接触式、非接触式,并分别阐述三种超声引入方式的优势与缺点。进一步,从增材、等材、减材制造三个方面全面讨论了不同超声引入方式和不同激光制造技术相结合的超声复合激光制造技术,探讨了不同复合制造技术的原理和技术特点,归纳了超声振动在激光制造过程中的影响规律。在当前研究进展基础上对超声复合激光制造技术的发展方向进行了展望。
激光制造 复合制造 超声振动 耦合机制 超声引入方式 
中国激光
2024, 51(4): 0402103
作者单位
摘要
1 北京航空航天大学机械工程与自动化学院,北京 100083
2 清华大学机械工程学院,北京 100084
3 浙江移动信息系统集成有限公司,浙江 杭州 310000
4 北京航空航天大学大型金属构件增材制造国家工程实验室,北京 100191
5 北京航空航天大学国际交叉科学研究院,北京 100083
人工智能在智能制造领域中起着举足轻重的作用。近年来,激光制造技术以其精度高、可控性强等优势而逐渐成为先进制造的关键技术,在航空航天、****、新能源汽车、生物医疗等重要领域中发挥了重要作用。与此同时,人工智能在激光制造中的模拟预测、参数优化、过程控制、质量分析等方面展现了巨大的应用潜力。主要从激光制造装备和工艺这两个方面出发,总结了激光制造领域中人工智能的研究现状与应用情况,并对人工智能和激光制造技术的发展方向及应用前景进行了展望。
激光技术 激光制造 人工智能 在线监测 过程控制 智能制造 
中国激光
2023, 50(11): 1101005
作者单位
摘要
1 厦门大学机电工程系,福建 厦门 361005
2 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Overview: Microstructure sensor is a kind of sensor with a 2D or 3D micron-scale structure prepared by advanced manufacturing technology. It is used as a sensitive part to enhance the transmission characteristics of physical, chemical, and biological signals to the environment, and convert the external signals into electrical signals. The microstructure is generally a regular or disordered structure, usually in the shape of microspheres, microcolumns, microcones, microgrooves and micropores. The microstructures with different shapes can realize the functions of puncture, pressure transmission, vibration transmission, drug transmission, bioelectric transmission, heat transmission, sound transmission, gas adsorption, and so on. In recent years, researchers from all over the world have gradually attached great importance to the research on the manufacturing technology of microstructure sensors. At present, researchers have proposed the MEMS manufacturing processes, such as reactive ion etching and chemical vapor deposition, to achieve mass manufacturing of high-precision microstructures on flexible polymer materials and rigid materials. In addition, some researchers have also proposed the manufacturing processes such as template method, self-assembly, nanoimprinting, and soft lithography to realize microstructure manufacturing. However, the above-mentioned manufacturing processes usually cannot prepare microstructure in one step, which has the problems of complex process, high production cost, limited processing materials, and unable to control the microstructure morphology. In contrast, laser manufacturing technology has the advantages of non-contact processing, no mask, customizable manufacturing, etc. By optimizing the parameters of laser process (such as laser power, scanning speed, filling mode and scanning path), it can achieve efficient and low-cost manufacturing of microstructures with different sizes and shapes. Therefore, using laser manufacturing technology to realize microstructure manufacturing and applying it to bioelectricity, temperature, and pressure sensors has become a research hotspot in microstructure sensor manufacturing technology. Laser manufacturing technology mainly includes laser ablation, laser direct writing, laser induction, laser-template processing, etc. Laser ablation is an auxiliary heating process based on the thermochemical and thermophysical effects of a laser beam, which melts the materials to be processed to realize structural forming. Laser direct writing is a manufacturing process that focuses high-energy photon beams on the materials to be processed to produce a photochemical process, and manufacturing the structures through material removal. Laser-induced modification is a manufacturing process to change the physical and chemical properties of the materials to be processed. Laser-template processing is a manufacturing process that uses a laser to produce microstructure molds on silicon, glass, polymer, and other substrates, and then uses soft lithography technology to reverse die the structures on the molds. Based on the interaction between the laser and materials, the induction, removal, and migration of materials to be processed can be realized. By adjusting the laser processing mode and processing parameters, the controlled manufacturing of the 2D or 3D microstructures or the controlled preparation of functional materials for the sensitive units can be realized, breaking through the limitations of efficiency and cost of traditional manufacturing methods for microstructures. In this paper, the types, functions, and manufacturing technologies of microstructures are summarized and classified. The preparation processes of laser manufacturing technology and other advanced manufacturing technologies of microstructures are summarized. The applications of microstructure sensors prepared by laser ablation, laser direct writing, laser induction, and laser-template processing technology in bioelectric sensing, temperature sensing, and pressure sensing are described in detail. Finally, the development trend of the laser manufacturing technology for microstructure sensors is summarized and prospected.
激光制造 微结构 生物电传感器 温度传感器 压力传感器 laser manufacturing microstructure bioelectric sensors temperature sensors pressure sensors 
光电工程
2023, 50(3): 220041
Author Affiliations
Abstract
1 Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, United States of America
2 Department of Mechanical and Material Engineering, Auburn University, Auburn, AL 36849, United States of America
Recently, there has been substantial interest in the large-scale synthesis of hierarchically architectured transition metal dichalcogenides and designing electrodes for energy conversion and storage applications such as electrocatalysis, rechargeable batteries, and supercapacitors. Here we report a novel hybrid laser-assisted micro/nanopatterning and sulfurization method for rapid manufacturing of hierarchically architectured molybdenum disulfide (MoS2) layers directly on molybdenum sheets. This laser surface structuring not only provides the ability to design specific micro/nanostructured patterns but also significantly enhances the crystal growth kinetics. Micro and nanoscale characterization methods are employed to study the morphological, structural, and atomistic characteristics of the formed crystals at various laser processing and crystal growth conditions. To compare the performance characteristics of the laser-structured and unstructured samples, Li-ion battery cells are fabricated and their energy storage capacity is measured. The hierarchically architectured MoS2 crystals show higher performance with specific capacities of about 10 mAh cm-2, at a current rate of 0.1 mA cm-2. This rapid laser patterning and growth of 2D materials directly on conductive sheets may enable the future large-scale and roll-to-roll manufacturing of energy and sensing devices.
2D materials laser manufacturing laser patterning energy applications Li-ion battery 
International Journal of Extreme Manufacturing
2022, 4(4): 045102
Author Affiliations
Abstract
1 Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
2 School of Optoelectronic Engineering and Instrument Science, Dalian University of Technology, Dalian 116081, People’s Republic of China
3 Westinghouse Electric Company LLC, Pittsburgh, PA 15235, United States of America
4 Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139, United States of America
The femtosecond laser has emerged as a powerful tool for micro- and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials for device fabrication. This paper describes femtosecond precision inscription of nanograting in silica fiber cores to form both distributed and point fiber sensors for sensing applications in extreme environmental conditions. Through the use of scanning electron microscope imaging and laser processing optimization, high-temperature stable, Type II femtosecond laser modifications were continuously inscribed, point by point, with only an insertion loss at 1 dB m-1 or 0.001 dB per point sensor device. High-temperature performance of fiber sensors was tested at 1000 ℃, which showed a temperature fluctuation of ±5.5 ℃ over 5 days. The low laser-induced insertion loss in optical fibers enabled the fabrication of a 1.4 m, radiation-resilient distributed fiber sensor. The in-pile testing of the distributed fiber sensor further showed that fiber sensors can execute stable and distributed temperature measurements in extreme radiation environments. Overall, this paper demonstrates that femtosecond-laser-fabricated fiber sensors are suitable measurement devices for applications in extreme environments.
femtosecond laser manufacturing optical fiber sensor device fabrication extreme environment sensing 
International Journal of Extreme Manufacturing
2021, 3(2): 025401
作者单位
摘要
1 华中科技大学机械科学与工程学院, 湖北 武汉 430074
2 华中科技大学材料科学与工程学院, 湖北 武汉 430074
铝合金密度低、比强度高,是理想的新能源汽车车身材料,但表面氧化层的存在严重影响焊接质量。激光清洗是一种基于脉冲激光的热烧蚀作用去除表面氧化层的方法,具有非接触、可控性好等优点。激光清洗处理会使铝合金表面形貌发生明显变化,对后续加工(如焊接、涂装等)有显著影响。研究了6061铝合金激光清洗表面形貌的变化规律,并建立了表面自然氧化层的激光清洗工艺窗口;基于此窗口,构建了6061铝合金表面粗糙度变化函数模型,对工艺参数进行优化。结果表明:平均功率影响凹坑形貌的变化尺寸,进而改变表面粗糙度,随着功率由15 W升高至75 W,粗糙度逐渐增大;扫描速度和线间距影响相邻凹坑的搭接形貌,进而改变粗糙度,随着扫描速度由2000 mm/s升高至6000 mm/s,线间距由0.02 mm升高至0.06 mm,粗糙度先增大后减小。6061铝合金自然氧化层的激光清洗工艺窗口的参数为:平均功率为30~60 W,扫描速度为3000~5000 mm/s,线间距为0.03~0.05 mm,采用此窗口的工艺参数进行激光清洗后,粗糙度最大为1.584 μm。
激光技术 激光制造 激光清洗 铝合金 表面形貌 粗糙度 工艺参数优化 
中国激光
2021, 48(22): 2202016
作者单位
摘要
1 清华大学机械工程系摩擦学国家重点实验室, 北京 100084
2 上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室, 上海 200240
纳米连接涉及纳-纳、纳-微-宏跨尺度的材料连接,其在微纳电子元器件及其系统、微纳光机电系统等互连封装制造和研发中起到越来越重要的作用。目前已研发了系列纳米连接工艺方法,但在高操控性能量输入、多材料选择、低损伤互连等方面均有各自的局限性。超快激光具有峰值功率密度极高、多材料适用、加工热影响区极小等显著优势,进而基于超快激光制造的纳米连接是一个重要的发展方向。以本团队及合作者的研究为主,阐述了纳米尺度材料超快激光连接的局域能量调控和异质连接界面冶金与能带修饰、基于超快激光纳米颗粒薄膜沉积的低温连接新技术,以及基于超快激光纳米连接的新型微纳器件的制造与应用。同时,指出了超快激光纳米连接所面临的挑战和发展趋势,为未来纳米连接的研究和应用提供参考。
激光制造 纳米材料 超快激光 纳米连接 脉冲激光沉积 界面冶金 微纳器件 
中国激光
2021, 48(15): 1502001
陈永义 1,2鲍立荣 1,2汪辉 1,2宁政 2[ ... ]张伟 1,2,*
作者单位
摘要
1 微纳含能器件工业和信息化部重点实验室, 江苏 南京 210094
2 南京理工大学化工学院, 江苏 南京 210094
纳米材料具有特殊的化学特性,在光电子、催化、医药、**等领域展现出了广阔的应用前景。激光液相烧蚀法(PLAL)是当前纳米粒子制备领域的研究热点之一,其利用脉冲激光在液相中创造出超高温、超高压的环境,通过改变脉冲激光的波长、脉宽、频率以及溶剂、靶材的种类等,来达到控制纳米粒子形态和尺寸的目的。本文介绍了激光液相烧蚀法的基本原理,综述了激光液相烧蚀法制备金属纳米粒子、金属氧化物纳米粒子、合金纳米粒子以及非金属纳米粒子的最新研究进展,总结了纳米粒子制备过程的影响因素和产物的性能。基于国内外研究进展,提出了激光液相烧蚀法制备纳米粒子的改进方向。
材料 纳米粒子 激光液相烧蚀法 基本原理 研究进展 
中国激光
2021, 48(6): 0600002
作者单位
摘要
1 上海工程技术大学机械与汽车工程学院, 上海 201620
2 美国爱荷华州立大学机械工程系, 美国 爱荷华州 50011
3 上海海洋大学工程学院, 上海 201306
4 武汉大学动力与机械学院, 湖北 武汉 430072
激光辅助近场纳米制造是利用近场聚焦激光束突破衍射极限对材料进行加工,使其发生纳米域内的相变或爆炸,从而制造纳米级材料和复杂结构的技术。基于探针的激光辅助近场制造技术是激光辅助近场纳米制造的一大分支。加工域内原位光场、温升、应力以及材料结构演变是纳米加工动态过程中的重要信息,有助于深入理解纳米加工过程多物理场相互作用的物理机制,以及进一步优化加工过程控制。本文主要综述了基于扫描探针显微镜探针针尖的激光辅助近场纳米加工中光场、温度场、应力场探测的实验和结构演变的理论计算工作。
显微 近场显微镜 激光辅助纳米制造 拉曼光谱 分子动力学模拟 
中国激光
2021, 48(6): 0600001
作者单位
摘要
1 南昌航空大学航空构件成形与连接江西省重点实验室, 江西 南昌 330036
2 中国科学院等离子体物理研究所, 安徽 合肥 230031
对传统轧制态(R)GH4169板材和SLM增材制造(3D)GH4169板材分别进行激光焊接,采用光学显微镜、扫描电镜、能谱仪对接头显微组织特征进行表征,并对接头进行显微硬度和拉伸测试。试验结果表明熔合区显微组织主要由胞晶向枝晶或柱状晶转变,晶内和晶间区域存在大量δ相和laves相。R/3D GH4169接头、R/R GH4169接头和3D/3D GH4169接头的晶粒尺寸和析出相尺寸依次减小,熔合区平均显微硬度依次增加(250 HV,261 HV,274 HV),接头拉伸强度依次增加(768 MPa,799 MPa,985 MPa)。R/3D GH4169接头和R/R GH4169接头断裂以韧性断裂为主,而3D/3D GH4169接头主要为脆性断裂。
激光技术 激光制造 GH4169高温合金 激光焊 显微组织 力学性能 
中国激光
2020, 47(10): 1002006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!