张奇睿 1,2石玉娇 1,2,*
作者单位
摘要
1 华南师范大学生物光子学研究院,激光生命科学教育部重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院,广东省激光生命科学重点实验室,广东 广州 510631
贵金属纳米探针及其聚合体以优异的光热转换效率、良好的生物相容性及灵活可调的光学吸收峰位受到了光热治疗领域研究人员的广泛关注。本文通过有限元仿真定量演示了贵金属纳米探针聚集诱导的非线性光学及光热效应,系统地讨论了纳米颗粒的材质、尺寸、排列方式、聚集程度等因素对纳米探针光热转换效率的影响,并对局域表面等离子体共振耦合效应产生的非线性光场以及光热增强效应及其机制进行了深入定量分析。
生物光学 纳米探针 光热转换 局域表面等离子体共振 耦合效应 
中国激光
2023, 50(9): 0907201
Author Affiliations
Abstract
1 Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123 Jiangsu, P. R. China
2 Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Photoacoustic (PA) imaging with much deeper tissue penetration and better spatial resolution had been widely employed for the prevention and diagnosis of many diseases. In this study, a new type of hydrogen peroxide (H2O2)-activated photoacoustic nanoprobe [Mn-AH nanoscale coordination polymer nanodots (NCPs)] was successfully synthesized by a simple one-step method in water phase containing 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), horse radish peroxidase (HRP), and manganese ion (Mn2+). After modification by polyethylene glycol (PEG), Mn-AH NCPs exhibited excellent stability and biocompatibility for in vivo H2O2-responsive chromogenic assay with great specificity and sensitivity. In the presence of H2O2, colorless ABTS would be converted by HRP into the oxidized form with strong near-infrared (NIR) absorbance, enabling photoacoustic detection of endogenous H2O2. Using H2O2-activated Mn-AH NCPs, we have successfully performed PA imaging and H2O2 detection of subcutaneous murine colon CT26 tumor and deep-seated orthotopic bladder tumor. Due to the inherent Mn element existence inside the Mn-AH, this nanoprobe also serves as a good T1-weighted magnetic resonance imaging (MRI) contrast agent simultaneously. Lastly, after accomplishing its imaging functions, the Mn-AH NCPs could be cleared out from the body without any long-term toxicity, providing a new opportunity for cancer diagnosis and treatment.Photoacoustic (PA) imaging with much deeper tissue penetration and better spatial resolution had been widely employed for the prevention and diagnosis of many diseases. In this study, a new type of hydrogen peroxide (H2O2)-activated photoacoustic nanoprobe [Mn-AH nanoscale coordination polymer nanodots (NCPs)] was successfully synthesized by a simple one-step method in water phase containing 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), horse radish peroxidase (HRP), and manganese ion (Mn2+). After modification by polyethylene glycol (PEG), Mn-AH NCPs exhibited excellent stability and biocompatibility for in vivo H2O2-responsive chromogenic assay with great specificity and sensitivity. In the presence of H2O2, colorless ABTS would be converted by HRP into the oxidized form with strong near-infrared (NIR) absorbance, enabling photoacoustic detection of endogenous H2O2. Using H2O2-activated Mn-AH NCPs, we have successfully performed PA imaging and H2O2 detection of subcutaneous murine colon CT26 tumor and deep-seated orthotopic bladder tumor. Due to the inherent Mn element existence inside the Mn-AH, this nanoprobe also serves as a good T1-weighted magnetic resonance imaging (MRI) contrast agent simultaneously. Lastly, after accomplishing its imaging functions, the Mn-AH NCPs could be cleared out from the body without any long-term toxicity, providing a new opportunity for cancer diagnosis and treatment.
Nanoscale coordination polymers (NCPs) PA imaging MRI H2O2 detection metabolic nanoprobes 
Journal of Innovative Optical Health Sciences
2022, 15(5): 2250026
谢荧玲 1,2沈博 2周兵帅 2刘敏 3[ ... ]董彪 2
作者单位
摘要
1 吉林大学基础医学院细胞生物学系, 吉林 长春 130021
2 吉林大学集成光电子学国家重点实验室,电子科学与工程学院, 吉林 长春 130012
3 吉林大学第一医院放疗科, 吉林 长春 130021
稀土掺杂的上转换纳米发光材料(UCNP)可以将低频光子转化为高频光子,通常是近红外光激发,可见光发射,这个独特的光学性质使其具有良好的生物学应用前景。近年来,UCNP已经在成像、传感等领域取得了重要进展,本文对近年来UCNP的合成、表面修饰以及在生物检测等方面的应用进行综述,涵盖了生物检测方面的重要进展,包括基于上转换荧光的温度、离子、小分子以及生物体内的重要蛋白与核酸等检测应用。
生物光学 稀土发光 上转换发光 荧光探针 生物传感 
中国激光
2020, 47(2): 0207017
作者单位
摘要
华南师范大学生物光子学研究院激光生命科学研究所 激光生命科学教育部重点实验室, 广东 广州 510631
构建高转换效率的纳米探针是推动光声(PA)分子成像发展的关键。传统光声探针的设计思路是使探针在组织光学窗口波段的光吸收系数最大化,而对探针的光声转换性质的研究却未得到足够重视。以金纳米球为例,讨论了在热膨胀机制介导的光声效应中纳米探针的微观光声转换机制,使理性设计高转换效率探针成为可能。通过理论分析和有限元分析发现,由于小尺寸效应,纳米探针不再满足热禁闭条件,在激光脉冲范围内即有热量从球体向周围介质扩散,从而使得纳米探针本身及其周围介质的热膨胀对光声信号均有贡献。
生物光学 光声成像 纳米探针 光声转换 机制 
中国激光
2018, 45(2): 0207026
Author Affiliations
Abstract
Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
Photoacoustic imaging (PAI) breaks through the optical diffusion limit by making use of the PA effect. By converting incident photons into ultrasonic waves, PAI combines high contrast of optical imaging and high spatial resolution in depth tissue of ultrasound imaging in a single imaging modality. This imaging modality has now shown potential for molecular imaging, which enables visualization of biological processes with systemically introduced functional nanoparticles. In the current review, the potentials of different optical nanoprobes as PAI contrast agents were elucidated and discussed.
Photoacoustic imaging optical nanoprobes molecular imaging 
Journal of Innovative Optical Health Sciences
2017, 10(4): 1730004
Author Affiliations
Abstract
1 IPHT, Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
2 EAH, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
Silica-based fiber tips are used in a variety of spectroscopic, micro- or nano-scopic optical sensor applications and photonic micro-devices. The miniaturization of optical sensor systems and the technical implementation using optical fibers can provide new sensor designs with improved properties and functionality for new applications. The selective-etching of specifically doped silica fibers is a promising method in order to form complex photonic micro structures at the end or within fibers such as tips and cavities in various shapes useful for the all-fiber sensor and imaging applications. In the present study, we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations into surface plasmon resonance effects, the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.
Optical fiber tips nanoprobes gas phase etching doping tip shaping metal coating 
Photonic Sensors
2012, 2(4): 331

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!