王长 1,2,*宋高辉 1,2谭智勇 1,2曹俊诚 1,2
作者单位
摘要
1 中国科学院上海微系统与信息技术研究所, 太赫兹固态技术重点实验室, 上海 200050
2 中国科学院大学材料与光电研究中心, 北京 100049
太赫兹(THz) 成像是 THz 技术应用的重要方向之一。基于 THz 量子级联激光器(QCL) 和 THz 量子阱探测器(QWP) 等半导体光子学器件的 THz 成像系统具有结构紧凑、空间分辨率高、成像信噪比较高等优点, 已成为当前研究的热点领域。对国内外关于 THz QCL 和 THz QWP 器件在远场和近场成像应用方面的研究进行了系统综述, 分析了 THz 成像系统的构成和成像效果, 总结了各 THz 成像系统的性能参数情况, 并探讨了 THz 成像系统性能提升的途径及其应用前景。
激光技术 成像 太赫兹 量子级联激光器 量子阱探测器 laser techniques imaging terahertz quantum cascade laser quantum well photodetector 
量子电子学报
2023, 40(2): 181
李汝劼 1,2,3唐利斌 1,2,3,*张玉平 1,3赵清 2
作者单位
摘要
1 昆明物理研究所,云南昆明 650223
2 北京理工大学物理学院,北京 100081
3 云南省先进光电材料与器件重点实验室,云南昆明 650223
红外技术为现代社会提供了包括遥感、成像、计量、产品检验、环境监测及生物医学诊断等诸多领域的应用价值。第三代红外光电探测器对易制造、低成本、可调节的红外光电材料的需求, 推动了红外量子点的发展。本文阐述红外量子点的制备方法,概述了红外胶体量子点探测器研究发展历程,并列举了红外胶体量子点在光电领域的代表性研究成果。最后对红外量子点光电探测器研 究进展进行了总结,提出了几个亟待解决的研究问题。为红外量子点探测器商业化提出了指导。
量子点 光电探测器 材料制备 光电器件 quantum dot, photodetector, material preparation, 
红外技术
2020, 42(5): 405
谭智勇 1,2曹俊诚 1,2,*
作者单位
摘要
1 中国科学院上海微系统与信息技术研究所太赫兹固态技术重点实验室, 上海 200050
2 中国科学院大学材料与光电研究中心, 北京 100049
光电表征技术是太赫兹应用技术的重要基础,涵盖了太赫兹频段光电器件表征、光谱测量、光束改善以及通信和成像应用等多个方面,在太赫兹应用领域中发挥着重要作用。介绍了太赫兹频段两种半导体量子器件的工作原理和最新进展,综述了二者在太赫兹脉冲功率测量、探测器响应率标定等光电表征技术中的应用及其在太赫兹快速调制与探测、太赫兹扫描成像系统中的应用,最后介绍了太赫兹光电表征技术的改善,包括激光源光束质量改善和探测器有效探测面积的提高方法等,并给出了器件及表征技术的潜在应用。
太赫兹技术 量子级联激光器 量子阱探测器 光电表征 快速调制与探测 
中国激光
2019, 46(6): 0614004
作者单位
摘要
上海交通大学 物理与天文系,上海 200240
提出了一个砷化镓基(GaAs/Al0.04Ga0.96As)太赫兹量子阱探测器,并对其光电流谱和背景噪声限制温度进行了表征,得到峰值响应频率为6.78 THz,背景噪声限制温度为16 K.理论上,首先,考虑多体效应对器件能带结构的影响,计算得峰值响应频率为6.64 THz,考虑到制备过程中的误差(THz器件较中红外器件,铝组分低,阱宽窄),理论与实验吻合的较好,证实了多体效应在太赫兹量子阱探测器中的重要影响;然后,对器件的电流电压特性进行研究,计算得到背景噪声限制温度为17.5 K,与实验吻合. 太赫兹量子阱探测器较低的工作温度,极大限制了其应用,提出了两种实现高温探测的方法:(1)引入光学汇聚天线,提高器件背景限制温度,计算结果表明当引入增强系数为106倍的天线时,其背景噪声限制温度达到97 K(远高于液氮温度77 K);(2)太赫兹量子阱探测器与太赫兹量子级联激光器联用,可实现信号噪声限制模式,从而实现高温探测.计算表明,当激光器功率达到0.003 mW/μm2,器件的工作温度可达77K.
太赫兹量子阱探测器 多体效应 高温探测 背景噪声限制 信号噪声限制 terahertz quantum-well photodetector many-body effect background-noise-limited performance photon-noise-limited performance 
红外与毫米波学报
2015, 34(6): 0731
作者单位
摘要
1 Department of Electrical Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2 Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
3 Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Shahid Beheshti University, G. C. 1983963113, Tehran, Iran
quantum ring photodetector resonant cavity detectivity distributed bragg reflector resonant tunneling barrier 
红外与毫米波学报
2014, 33(6): 571

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!