作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征重点实验室,安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230031
针对温度效应会影响太阳光度计观测结果且温度校正系数难以获取等问题, 设计了一种基于热电制冷器 (TEC) 的全自动太阳光度计温控系统。介绍了自研全自动太阳光度计的整体设计,特别是温控系统设计, 并分析了温度对探测器响应的影响。最后对该全自动太阳光度计进行了野外测试, 在合肥地区与商用仪器CE318进行了同步观测比对, 测试结果表明全自动太阳光度计反演的气溶胶光学厚度与CE318校正后的结果一致, 偏差在0.01以内;在敦煌地区的长期测试结果表明, 在温度变化较大的长期野外观测中, 全自动太阳光度计温控系统均保持在 (25 ± 0.2) ℃内, 验证了温控系统设计的有效性和可靠性。
温控 太阳光度计 热电制冷器 气溶胶光学厚度 温度校正 temperature control sun photometer thermos-electric cooling aerosol optical depth temperature correction 
大气与环境光学学报
2023, 18(1): 73
朱海 1,2,3李建玉 1,3,*黄宏华 1,3徐刚 1,3[ ... ]魏合理 1,3
作者单位
摘要
1 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230031
3 先进激光技术安徽省实验室,安徽 合肥 230037
研制出一种可以在船载平台下完成气溶胶测量的太阳光度计。仪器采用两段式图像跟踪方法,首先利用鱼眼成像系统对太阳进行粗跟踪,之后通过精跟踪成像系统来提高跟踪精度,并阐述了二维转台、图像跟踪系统、测量光路的工作流程。利用船载平台太阳光度计在渤海湾进行长期观测,渤海湾日平均气溶胶光学厚度多集中在0.1~0.3范围内,大气较为洁净,且夏季大气以细粒子为主,而深秋大粒子占据主导地位。将所得结果与日本POM-01 MKⅢ船用太阳光度计的测量结果进行对比,发现气溶胶光学厚度日变化趋势基本相近,决定系数可达到0.968,其平均相对测量误差为4.83%,?ngstr?m 指数平均相对测量误差为2.55%。所得结果验证了船载太阳光度计的可靠性与稳定性,并且可以进一步利用可见光到近红外的辐射信息反演其他大气参数的光学特性。
大气光学 气溶胶 太阳光度计 船载平台 渤海湾 
光学学报
2023, 43(6): 0601007
汪可 1,2,*李正强 2李凯涛 2许华 2[ ... ]王博林 2,3
作者单位
摘要
1 安徽师范大学地理与旅游学院, 安徽 芜湖 241003
2 中国科学院空天信息创新研究院, 北京 100101
3 中国科学院大学, 北京 100049
臭氧是大气中一种重要的微量气体, 是影响对流层与平流层大气运动的重要成分之一, 臭氧的高精度探测对于环境和气候具有重要的意义。OMI 传感器是目前具备探测全球臭氧含量的主要遥感传感器之一。利用地基 Pandora 观测网全球范围内 44 个臭氧观测站点数据对 OMI 卫星数据产品进行了精度验证。结果表明: OMI 臭氧产品与 Pandora 地基测量结果之间具有很好的线性相关性, 相关系数达到 0.948, 但精度结果存在区域差异。在南半球地区, 相关系数为 0.915; 在北半球低纬度地区, 其相关系数为 0.932, 中纬度地区相关系数为 0.948, 而在高纬度地区, 相关系数达到了 0.957。 此外, 验证精度还与臭氧柱总量存在相关性, 在臭氧柱总量低于 220 Du (对应臭氧空洞条件) 时, OMI 卫星产品存在高估现象, 高估约 13%; 而在臭氧柱总量高于 400 Du 时, OMI 的臭氧产品低于 Pandora 地基测量结果, 且随着臭氧柱总量增加, 低估情况也越严重, 在臭氧柱总量达到 500 Du 时, OMI 臭氧产品低估约 4%。
地基验证 臭氧分布 相对误差 Pandora 太阳光度计 ground-based verification ozone distribution relative error Pandora sun photometer 
大气与环境光学学报
2022, 17(6): 640
朱海 1,2,3李建玉 1,3,*黄宏华 1,3徐刚 1,3[ ... ]魏合理 1,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院大气光学重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230031
3 先进激光技术安徽省实验室,安徽 合肥 230037
传统太阳光度计在海上移动平台上不能精准跟踪太阳。为了解决船舶在移动过程当中实现对太阳高精度跟踪的问题,利用鱼眼镜头、陀螺稳定平台、小视场CCD图像传感器等构建了船载型太阳光度计的图像跟踪系统。文中详细地描述了图像跟踪系统的整体结构和单臂探头的光路设计,介绍了时钟法与鱼眼成像系统相结合的方式在全天空大视场范围下进行太阳的粗跟踪,然后通过小视场的CCD图像处理技术来提高跟踪精度。此外,给出了系统的软件跟踪算法和流程,分析了系统跟踪的可靠性。该系统实现了在海上移动平台下的全自动跟踪测量,综合跟踪精度优于1′。与日本POM-01MKⅢ船用太阳光度计进行透过率与水汽的数据对比表明:在940 nm波段的大气透过率最大相对误差不超过7.6%,水汽含量最大相对误差不超过6.1%。该系统可以应用于船载太阳光度计测量海上整层大气透过率以及水汽数据,也可应用于其他对移动非稳定平台下太阳的跟踪。
海上移动平台 船载太阳光度计 图像跟踪系统 图像处理技术 水汽 offshore mobile platform shipboard sun-photometer(SSP) image tracking system image processing technology water vapor 
红外与激光工程
2022, 51(9): 20210824
李宝莹 1,2,3崔生成 1,3,*乔智 1,2,3张梓晗 1,3[ ... ]刘娜娜 1,3,4
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院大气光学重点实验室,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230026
3 先进激光技术安徽省实验室,安徽 合肥 230037
4 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
研究气溶胶辐射强迫和激光大气传输效应,需要掌握气溶胶光吸收特性参数及其垂直分布情况。提出一种基于实测与模式相结合的方法来估测垂直高度上气溶胶吸收系数分布。首先采用太阳辐射计和激光雷达观测的数据分别反演整层气溶胶光学厚度(AOD)和消光廓线,再将辐射传输计算软件moderate spectral resolution atmospheric transmittance algorithm and computer model(MODTRAN)和santa barbara DISORT atmospheric radiative transfer(SBDART)在相应气溶胶模式下的数据结果作为约束条件,得到气溶胶吸收廓线,并通过外场实验测量数据进行反演实验。结果表明,所提方法是可行的,可作为气溶胶吸收系数垂直分布有效获取的一种新的技术途径。
大气光学 气溶胶 吸收系数廓线 激光雷达 太阳辐射计 辐射传输 
激光与光电子学进展
2021, 58(19): 1901001
作者单位
摘要
中国科学院 安徽光学精密机械研究所 中国科学院大气光学重点实验室, 安徽 合肥 230031
为了实时测量多个波段激光大气透过率, 研制了ISP02型近红外太阳辐射计。详细阐述了该仪器的硬件组成、光学系统设计以及工作流程, 并对仪器进行了定标, 给出仪器能达到的性能指标。依据建立的基于太阳宽谱直接辐射测量获取激光波段大气透过率的方法, 实测得到1.064, 1.315, 1.54 μm大气透过率, 将结果与POM02型太阳辐射计采用外推法获取的激光大气透过率进行对比, 误差均小于6%, 测量的水汽总量与POM02对比, 误差均小于7%; 然后, 将两者外推的3.78 μm透过率进行对比, 误差均小于5%。秋冬季实测的1.315 μm透过率与激光大气传输评估软件对比, 误差小于2%。该仪器测量结果可靠、性能稳定, 可为同时获取多个波段激光大气透过率提供有效测量手段。
光学仪器 太阳辐射计 激光大气透过率 近红外波段 optical instrument sun-photometer laser atmospheric transmittance infrared waveband 
光学 精密工程
2020, 28(2): 261
作者单位
摘要
中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
随着激光技术在众多科学领域的应用,激光波段大气透过率的实时获取尤为重要。基于测量和模拟结果研究,提出基于太阳辐射计的宽谱直接辐射测量提取红外波段激光大气透过率的方法,该方法低成本、高时效、可同时获得多波段的激光大气透过率。对比研制的ISP型近红外太阳辐射计与POM02的实测结果可知:对应波段透过率和水汽总量误差都小于7%;由1.31 μm与1.32 μm分别提取到1.315 μm波段的透过率,两者误差小于4%,提取的误差与水汽含量成正比,并由1.32 μm反演得到水汽总量,与0.94 μm反演得到的水汽总量结果对比,误差小于10%。因此,在无0.94 μm波段测量时,可以考虑用1.32 μm波段反演水汽总量。将该方法与激光传输评估软件根据实时测量的大气参数模拟计算得到的1.315 μm激光大气透过率进行对比,误差小于6%。该方法对激光工程在实际大气中的应用具有参考价值。
大气光学 激光大气透过率 近红外波段 太阳辐射计 太阳直接辐射 
光学学报
2020, 40(2): 0201001
作者单位
摘要
1 中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
研制一种高精度全自动可实时测量、远程控制覆盖可见-近红外多波长太阳光度计PSR-2,可实现太阳直射辐照度、天空辐亮度(主平面、等天顶角)、气溶胶光学厚度、大气柱水汽含量和臭氧含量的实时测量和显示, 具有各通道独立同时测量、精确的温度控制、精确的太阳跟踪等检测功能。PSR-2在本单位自研PSR-1的基础上进行改进, 经受住长时间沙漠风沙和雨水侵蚀的测试, 具有能够长时间有效稳定观测、更加小型化、数据处理更便捷和更高的性价比等特点。在敦煌给仪器进行了Langley法标定和仪器温控性能测试, 结果显示PSR-2 Langley定标拟合直线相关性高于99%, 恒温仓温度稳定在在(25±0.3)℃, 与国外行业标准CE318的合肥、敦煌两地实际测量结果对比, PSR-2气溶胶光学厚度和大气柱水汽含量偏差分别在0.02和0.1以内, 并进行了误差分析。
太阳光度计 定标 温控 气溶胶光学厚度 水汽 sun-photometer calibration temperature control aerosol optical thickness water vapor 
应用光学
2019, 40(1): 105
杨东 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所基础科学中心光电探测室, 安徽 合肥230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥230031
数值模拟显示在太阳光前向散射角5°范围内, 视场变化探测的信号对卷云的光学厚度和有效尺度敏感。研发了一种基于图像跟踪的自动快速变视场太阳光度计(VFOVSP), 可快速测量不同视场太阳的直接辐射, 为地基测量卷云提供了一种新的技术手段。该仪器采用图像跟踪技术, 解决了薄云条件下四象限跟踪失效的问题。采用程控可变视场光阑, 该仪器实现了短时间内不同视场的快速测量。将该仪器测量的气溶胶光学厚度(AOT)与太阳光度计(POMO2型)的测量结果进行了对比, 结果显示该仪器测量的AOT方均根误差小于0.5%, 这表明该仪器测量气溶胶的精度高。结合不同的天气条件, 分析了该仪器不同视场比值的变化, 比值的变化与粒子尺度和光学厚度有关, 为反演卷云的光学特性提供了可能。
测量 太阳光度计 可变视场光阑 卷云探测 图像跟踪 
激光与光电子学进展
2018, 55(9): 091201
牟福生 1,2,*李素文 1李昂 2谢品华 2,3[ ... ]吴丰成 3
作者单位
摘要
1 淮北师范大学物理与电子信息学院,安徽 淮北 235000
2 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230031
3 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室,安徽 合肥 230031
利用2011~2014年北京太阳光度计数据对北京地区的气溶胶光学特性进行了研究。北京地区气溶胶光学厚度(aerosol optical depth, AOD) 全年较高,四年440 nm波长的AOD年均值分别是0.67±0.70, 0.69±0.71, 0.73±0.66, 0.75±0.66。AOD月均值表现出 一定的季节变化,最大值和最小值一般出现在春季和秋季。通过气溶胶类型分类可知,除了春季受沙尘大颗粒气溶胶影响外,北京地区高气溶胶主要 由城市细粒子气溶胶引起,且四季小粒子增长现象明显,其中夏秋季主要为吸湿性增长,其他季节主要为静稳天气下的增长。 对比沙尘和霾天气下气溶胶性质,结果表明:霾天气下AOD一般高于沙尘天气, Hysplit风场后向轨迹模型 结果表明,沙尘天气下气团为穿过蒙古草原和沙漠的西北风场。在灰霾天气下风场风速较小且主要以东南和西南风场为主,高气溶胶状 态为本地积累和外来输送共同作用产生。
气溶胶光学特性 气溶胶分类 太阳光度计 aerosol optical properties aerosol classification sun-photometer 
大气与环境光学学报
2018, 13(2): 88

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!