李堂玥 1,2,3牟达 1,2,*夏鹏宇 1,2张悦 1,2谢蕙阳 1,2
作者单位
摘要
1 长春理工大学光电测控与光信息传输技术教育部重点实验室,光电测控技术研究所,吉林 长春 130022
2 长春理工大学光电工程学院,吉林 长春 130022
3 长春理工大学中山研究院,广东 中山 528400
太赫兹时域光谱系统(THz-TDS)是检测物质组成和变化的先进科学装置,可以准确定位和分析物质的微小变化,对物理学、化学、生物学等多个学科的发展产生了深远影响。光纤式THz-TDS在光路传播时具有能量传输损失少、结构紧凑等优点。在光纤式THz-TDS的基础上,将双透镜和旋转延迟线结合,通过研究分析耦合效率理论和双透镜传输特性,利用光学软件ZEMAX设计了一款双透镜准直耦合收发一体共光路系统。为了得到更高的单模光纤耦合效率,研究分析了激光与光纤的耦合原理及耦合误差,并且绘制了耦合失配时的效率曲线。研究结果表明:高斯传播单模光纤的耦合效率达到了76.27%,可以满足稳定辐射太赫兹信号的要求,同时,光纤耦合效率的提高对于增大THz-TDS的太赫兹脉冲信号带宽具有一定帮助。
光纤光学 光纤耦合 收发一体 太赫兹时域光谱系统 单模光纤 
中国激光
2024, 51(8): 0806003
作者单位
摘要
江西师范大学物理与通信电子学院,江西 南昌 330022
提出一种基于两相交开口谐振环(TI-SRR)的超材料太赫兹带阻滤波器,通过改变TI-SRR线宽、环间间隔和半径大小,探究各参数对滤波器透射系数的影响。研究了超材料太赫兹带阻滤波器三个谐振点处的电场和表面电流分布,进而分析了滤波器的工作机理。为了验证理论模型的计算结果,采用微纳光刻技术制备滤波器的实物样品,使用太赫兹时域光谱系统进行测试。结果表明,该滤波器有3个谐振点,谐振频率分别为0.431、0.476、0.934 THz,对应的透射系数(S21)分别为-42.518、-40.331、-14.132 dB,-10 dB阻带带宽分别为0.220 THz和0.026 THz。实测曲线整体趋势与仿真曲线保持一致,阻带特性相较良好,测试结果与仿真结果较为符合。该滤波器在新型通信设备和精密仪器领域有较高的应用价值。
超材料 太赫兹 带阻滤波器 微纳光刻 太赫兹时域光谱 
光学学报
2024, 44(5): 0513001
祝莉莉 1,2,3薛竣文 3任姣姣 1,2,3张丹丹 1,2,3[ ... ]李丽娟 1,2,3,*
作者单位
摘要
1 长春理工大学光电工程学院,吉林 长春 130022
2 长春理工大学光电工程学院光电测控与光信息传输技术教育部重点实验室,吉林 长春 130022
3 长春理工大学中山研究院,广东 中山 528403
光学延迟线是影响太赫兹时域光谱系统中太赫兹信号准确性、信噪比以及频谱分辨率的关键环节。本文设计了一种由24个转盘反射面(TRS)构成的快速旋转光学延迟线(FRODL)。通过对FRODL工作角度的仿真,得到了其理论延迟时间和理论非线性度。基于FRODL实际耦合过程中耦合功率的波动性大小,确定了FRODL的实际工作区间,并搭建了偏振迈克耳孙干涉系统,对FRODL结构的实际延迟时间进行标定,得到了各转盘反射面工作的实际延迟时间。标定结果显示,FRODL校准前的最大非线性误差为0.094 ps,非线性度为0.215%。通过两次利用三次样条插值,对FRODL实际延迟时间和采样点信号进行匹配,获得了校准后的太赫兹等间隔时域波形。
光学延迟线 非线性校准 太赫兹时域光谱系统 延迟时间 非线性误差 
光学学报
2024, 44(5): 0512001
作者单位
摘要
1 华东师范大学精密光谱科学与技术国家重点实验室,上海 200062
2 上海理工大学光电信息与计算机工程学院,上海 200093
3 华东师范大学重庆研究院,重庆 401121
描述一种基于高速光学异步采样(ASOPS)方法的太赫兹光谱数据采集系统,使用两台重频差为50 Hz的飞秒脉冲激光器分别作为泵浦光和探测光;使用LT-InGaAs/InAlAs光电导天线产生和接收太赫兹信号,使用采样率可调、采样模式可选的数据采集系统采集时域信号和获取光谱。试验得到的谱宽为0.06~4 THz,信噪比大于60 dB。在301.6 Msa/s的采样率和50 Hz扫描频率下,试验测量的水蒸气吸收光谱中吸收线的频率与HITRAN数据库中公布的非常接近,最大误差为12 GHz。
太赫兹时域光谱 光学异步采样 数据采集 现场可编程门阵列 terahertz time-domain spectroscopy optical asynchronous sampling data acquisition field programmable gate array 
应用激光
2023, 43(6): 0145
作者单位
摘要
1 上海市环境科学研究院,上海 200233
2 同济大学环境科学与工程学院,上海 200092
3 华太极光光电技术有限公司,上海 200093
采用反射式太赫兹时域光谱技术测试涂料的时域光谱,通过第 1次反射和第 2次反射的反射峰比值,得到判定涂料为水性还是溶剂型的临界阈值。该方法无需复杂的样品前处理,仅需将涂料置于测量容器中即可完成测试。一次性纸杯或聚乙烯塑料容器、不同的测试人员和测试时间对临界阈值均无影响,为生态环境监管领域提供了一种快速、准确辨别水性涂料和溶剂型涂料的方法。
太赫兹时域光谱 反射式 涂料 快速辨别 terahertz time domain spectroscopy reflective coatings rapid identification 
太赫兹科学与电子信息学报
2023, 21(5): 594
作者单位
摘要
1 北京远大恒通科技发展有限公司, 北京 100048
2 首都师范大学太赫兹光电子学教育部重点实验室, 北京 100048
随着高性能复合材料在航空航天和**等高新领域的广泛应用, 对其质量和性能检查的要求愈加引起重视, 如何通过各种方法对复合材料进行无损检测成为近年来研究人员关注的热点和研究方向。太赫兹波量子能量低, 对大多数非极性物质透明, 因此使用太赫兹技术对复合材料进行无损检测有着独特的应用优势。本文基于太赫兹技术的特点, 对太赫兹时域光谱和太赫兹成像技术的无损检测分别进行了详细的论述, 并总结了目前复合材料的太赫兹无损检测技术发展趋势, 最后对其发展前景进行了展望。
太赫兹技术 无损检测 太赫兹时域光谱 太赫兹成像 复合材料 terahertz technology Nondestructive Testing Terahertz Time-Domain Spectroscopy terahertz imaging composite materials 
太赫兹科学与电子信息学报
2023, 21(11): 1295
作者单位
摘要
中国计量大学太赫兹技术与应用研究所, 浙江 杭州 310018
三元共晶是在二元共晶的基础上发展的一种新型共晶设计策略, 可以在不影响药物固有生物活性和相应药理活性的情况下改善药物的理化性质, 因此三元共晶在药物研究和开发方面具有巨大的潜力。 由于三元共晶会涉及三种不同分子的复杂组装, 其复杂程度随着参与药物共晶的分子种类和数量的增加而增加, 潜在的共晶氢键结合位点数量也随之增加, 所以很难获得特定的三元共晶, 关于特定三元共晶系统的微观分子结构方面的报道也很少。 为了理解三元共晶结构的氢键形式, 通过检测手段获取三元共晶体系中相关二元及三元共晶的分子结构信息对了解三元药物共晶的复杂形成过程尤为重要。 采用机械研磨方法成功地合成了异烟酰胺-戊二酸、 吡嗪酰胺-戊二酸二元共晶和异烟酰胺-戊二酸-吡嗪酰胺三元共晶, 通过太赫兹时域光谱(THz-TDS)和密度泛函理论(DFT)计算对二元共晶和三元共晶结构进行研究。 太赫兹光谱实验结果表明, 二元和三元共晶都显示出各自独特的光谱特征。 晶体结构分析表明异烟酰胺-戊二酸-吡嗪酰胺三元共晶结构中戊二酸一侧羧基中的羟基与异烟酰胺中的吡啶N形成羧基-吡啶N氢键异合成元, 而异烟酰胺中的酰胺与吡嗪酰胺中的酰胺形成酰胺-酰胺氢键同合成元。 最后, 将DFT计算得到的理论太赫兹光谱与实验进行对比, 发现异烟酰胺-戊二酸、 吡嗪酰胺-戊二酸二元共晶氢键形式的叠加与异烟酰胺-戊二酸-吡嗪酰胺三元共晶的氢键形式并不是完全一致的, 但是这两种二元共晶的氢键形式对预测三元共晶的氢键形式具有极为重要的参考价值。 这些结果为新兴的药物共晶领域在分子水平上研究特定三元共晶的分子组装和分子间相互作用提供了丰富的信息和独特的方法。
三元共晶 太赫兹时域光谱 密度泛函理论 氢键 Ternary cocrystal Terahertz time-domain spectroscopy Density functional theory Hydrogen bond 
光谱学与光谱分析
2023, 43(12): 3781
作者单位
摘要
1 福州大学机械工程及自动化学院, 福建 福州 350108
2 福州大学机械工程及自动化学院, 福建 福州 350108 莆田学院新工科产业学院, 福建 莆田 351100
3 莆田学院新工科产业学院, 福建 莆田 351100
4 西人马联合测控(泉州)科技有限公司, 福建 泉州 362011
工程塑料优异的介电性能和金属可替代性, 使其成为5G建设的热门材料。 对外观相近但性能不同的几种工程塑料的检测与定性分析, 有助于工程塑料更好地应用于5G线路板和天线模块的制造。 应用太赫兹时域光谱技术(THz-TDS)对几种常见的工程塑料PEEK、 PPS、 ABS进行光谱检测, 分别得到三种工程塑料在太赫兹波段的光谱数据。 通过快速傅里叶变换, 将三种工程塑料的THz时域光谱进行转换, 获取工程塑料在0.1~1.2 THz下的THz频域光谱, 并经过计算提取出相应的吸收光谱。 分析THz时域光谱可知, 不同种类工程塑料的THz时域谱存在时间延迟线和振幅的差异, 可以直观地显示出各种塑料间的差异, 这表明工程塑料的THz-TDS分类识别具有一定的可行性。 但由于同属工程塑料, 在太赫兹波段上表现为峰位、 峰值相近, 且各个材料无明显的THz特征吸收峰, 因此无法直接以指纹谱进行判定。 鉴于此, 研究将非线性工具卷积神经网络(CNN)应用于无明显特征吸收峰的工程塑料识别研究的可行性, 通过对CNN的网络结构和重要权值参数的优化, 提出了一种改进的CNN分类模型。 该模型使用LeakyRelu激活函数, 添加BN层, 利用Adams梯度下降算法, 保证分类器的鲁棒性, 加快网络分类速度, 提高太赫兹吸收光谱识别精度, 同时可以有效地解决由于THz光谱数据量不足而容易陷入局部最优问题。 并将该方法同传统的线性工具主成分分析-支持向量机法(PCA-SVM)进行对比。 对比实验结果显示: 改进的CNN分类模型平均运行耗时为0.15 ms, 训练集准确率为99.6%, 测试集准确率达到98.8%; 相较传统的PCA-SVM分类模型, 其分类效率大幅提升, 同时测试集分类准确率提高了27.3%, 训练集分类准确率提高了30.9%。 研究结果表明: 将THz-TDS与改进的CNN分类模型相结合, 能够实现对上述三种工程塑料的精确鉴别与分类识别, 为工程塑料的非接触快速无损检测和识别提供了新方法, 也为其他无THz特征峰物质的识别与检测方法研究提供参考。
太赫兹时域光谱检测技术 工程塑料 卷积神经网络 分类识别 Terahertz time-domain spectroscopy Engineering plastics Convolutional neural network Classification recognition 
光谱学与光谱分析
2023, 43(5): 1387
王也 1,2刘闯 1,*任姣姣 1,2刘涛 1[ ... ]李丽娟 1,2
作者单位
摘要
1 长春理工大学光电工程学院光电测控与光信息传输技术教育部重点实验室,吉林 长春 130022
2 长春理工大学中山研究院,广东 中山 528400
为探究有机硅胶黏结剂的受力特性,提出了一种基于太赫兹时域光谱特征进行无损表征的方法,利用太赫兹时域透射光谱对有机硅胶胶膜的应力光学系数进行表征,分别以胶膜折射率及时域光谱相位延迟作为参量开展了实验研究,两种方法获得的应力光学系数均为0.18 MPa-1。利用反射式太赫兹时域光谱系统对不同受力状态下的有机硅胶胶膜进行实验研究,分别给出了胶膜厚度为2 mm和3 mm条件下太赫兹时域光谱延迟时间差与拉应力的变化关系,实验结果与理论规律相一致。研究结果表明,太赫兹时域光谱可有效地对有机硅胶等粘接材料的受力特性进行定量化表征,从而为胶接结构在受力状态下的粘接强度的评估提供一种新的方式。
光谱学 太赫兹时域光谱技术 有机硅胶 应力表征 无损检测 
光学学报
2023, 43(23): 2330002
杜遇林 1,2谢欣荣 1,2,*陈红胜 1,2高飞 1,2,*
作者单位
摘要
1 浙江大学 杭州国际科创中心 极端光学技术与仪器全国重点实验室 量子信息交叉中心,杭州 310027
2 浙江大学 国际电磁科学院浙江大学分院 国际联合创新中心,海宁314400
为提高太赫兹光电导天线输出效率,提出了一种基于层级人工等离激元结构的光电导天线的设计方法。层级人工等离激元结构由纳米尺度金属块阵列和微米尺度周期栅格结合而成,理论与仿真结果表明,前者通过人工局域表面等离激元谐振效应可提高光子-电子转换效率,后者则利用人工表面等离激元结构基模的禁带和高阶模式与电流源模式之间的正交性增强了光电导天线的垂直方向性。集成了层级人工等离激元结构的光电导天线结合了两种结构的优点,数值计算结果表明,其输出效率优于分别采用两种结构的方案。相较于未改进的光电导天线,层级人工等离激元结构在较宽频带范围内(0.86~1.51 THz)实现了光电导天线垂直方向辐射功率密度的提高。
光电导天线 太赫兹时域光谱技术 太赫兹源 人工表面等离激元 局域表面等离激元谐振 Photoconductive antenna Terahertz time-domain spectroscopy Terahertz source Spoof surface plasmon polariton Localized surface plasmon resonance 
光子学报
2023, 52(10): 1052410

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!