中国船舶集团有限公司第七一八研究所,河北 邯郸 056000
由于气体拉曼散射信号十分微弱,对激光拉曼技术在气体检测领域的应用产生一定的限制,提出一种采用多次反射与增大气体压力合二为一的方式增强气体拉曼散射信号的方法。以常压下空气做为待测成分,在多次反射基础上,采用加压泵将常温、常压下空气压缩到密闭样品池内,保持样品池内压力分别为0.1 MPa、0.2 MPa、0.3 MPa、…、1 MPa等10个不同压力,积分时间1 s条件下,采集空气中O2(特征峰波数位置1552 cm-1)、N2(特征峰波数位置2333 cm-1)、CO2(特征峰波数位置1278 cm-1、1386 cm-1)的拉曼光谱数据,从峰强度、峰面积、信噪比、半峰全宽等4个角度分析特征峰随压力变化情况。发现信噪比与压力呈正相关,基本符合对数关系,压力从0.1 MPa增大到1 MPa,信噪比提升约21 dB。峰强度、峰面积与压力呈正相关,符合线性关系。压力在1 MPa内,特征峰中心位置几乎与压力不相关,半峰宽随压力的变化很小,对比1 MPa与0.1 MPa的数据发现,O2特征峰展宽约为0.7 cm-1。因此,增大气体压力是一种简单有效的增强气体拉曼散射光谱信号的方法,可以在多次反射基础上进一步增强拉曼信号。
拉曼光谱 气体探测 增大压力 Raman spectroscopy gas detection increased pressure 激光与光电子学进展
2023, 60(19): 1930003
激光与光电子学进展
2023, 60(19): 1923003
中国激光
2023, 50(15): 1507202
光学学报
2023, 43(15): 1530001
红外与激光工程
2023, 52(6): 20230218

1 深圳技术大学中德智能制造学院,广东 深圳 518118
2 温州大学机电工程学院,浙江 温州 325200
3 浙江大学机械工程学院,流体动力与机电系统国家重点实验室,浙江 杭州 310027
Overview: Surface-enhanced Raman scattering (SERS) affords a rapid, highly sensitive, and nondestructive approach for label-free and fingerprint diagnosis of a wide range of chemicals. This technique has been applied in explosives detection, pre-cancer diagnosis, food safety, and forensic analysis, where a small number of hazardous substances can seriously affect health of human beings. Thus, it is of great significance to prepare high-performance SERS sensors. In general, the signal intensity of SERS is determined by the following three factors: 1) The enhancement effect of surface nanostructure on local electric fields; 2) The number of molecules to be detected in hot spots; 3) Performance of the Raman spectrometer. Therefore, in order to achieve high-performance SERS detection of trace molecules, current research focuses on how to increase the density of hot spots and the number of analyte molecules in the detection area. An ultrafast laser has an ultra-short pulse width and ultra-high peak power, so it can interact with the majority of materials with high processing accuracy and excellent controllability. Meanwhile, it can rapidly construct a variety of large-area micro/nano-structures on material surfaces based on facile digital programming strategies. In addition, combined with multi-beam parallel fast scanning technology, low-cost and high-efficiency machining can be realized without a special requirement for the machining environment. Based on the above advantages, the ultrafast laser has become one of the important means for the fabrication of micro/nano-structures. This is important for the commercial preparation of high-performance SERS sensors. In this paper, we focus on two aspects to introduce the ultrafast laser preparation of high-performance SERS sensors, including how to increase the density of hot spots and the number of analyte molecules in the detection region. Ultrafast lasers can prepare micro/nano-structures with local field enhancement effects by both "bottom-up" and "top-down" processing strategies. The first is based on the "bottom-up" principle, where the reduction, deposition or polymerization of atoms, molecules or other nanoparticles is controlled by ultrafast lasers to achieve additive manufacturing of micro/nano-structures. The other is based on the "top-down" principle, where materials are removed by the ultrafast laser ablation to rapidly achieve hierarchical micro/nanostructures. These structures provide abundant active hot spots for SERS detection. In particular, the superhydrophobic surfaces prepared by the ultrafast laser are one of the most effective methods to achieve the enrichment of analyte molecules. Raman scattering can be excited more effectively by enriched molecules, which is conducive to obtaining higher detection limits and realizing ultra-trace detection. Finally, a prospect for the development of laser-prepared SERS substrates is provided.
超快激光加工 拉曼光谱 表面增强拉曼散射 微纳结构 ultrafast laser fabrication Raman spectroscopy surface-enhanced Raman scattering micro/nano-structures

1 合肥工业大学仪器科学与光电工程学院,安徽 合肥 230009
2 中国科学技术大学工程科学学院,安徽 合肥 230026
Overview: Surface-Enhanced Raman spectroscopy (SERS) is a highly sensitive and high-resolution molecular recognition technique with important applications in many fields. As an emerging low-cost, high-resolution, and highflexibility micro-nano processing method, femtosecond laser direct writing has been widely used in the field of preparing SERS substrates. Compared with traditional processing methods for preparing SERS substrates, femtosecond laser direct writing processing has certain advantages in terms of flexibility, three-dimensional molding, processing material range, processing accuracy, and other aspects. In this review, we classify the processing methods of femtosecond laser preparation of SERS substrates into four categories, including femtosecond laser two-photon metal reduction, femtosecond laser cutting metal, femtosecond laser cutting-sputtering, and femtosecond laser 3D printing. Femtosecond laser two-photon metal reduction uses the two-photon reduction effect to reduce metal cations in metal solutions to metals, such as silver ions in silver nitrate solutions to silver nanoparticles. This method is suitable for the one-step preparation of SERS substrates in closed microchannels. Femtosecond laser cutting metal directly prepares the SERS substrate structure on a metal substrate. This method takes advantage of the high peak power of the femtosecond laser to ablate the surface of the metal sample to obtain a patterned surface structure. At the same time, femtosecond laser ablation produces particle fragments, which are usually redeposited on the patterned surface, resulting in SERS "hot spots". Femtosecond laser direct cutting of metal can prepare SERS substrates in one step, which has the advantages of high processing efficiency and simple processing and is more conducive to the application of large-scale production of practical SERS detection. Femtosecond laser cutting-sputtering is to process any structure on non-metallic substrates such as polymers and then sputtering/evaporating metal nanoparticles on the surface of the structure. This method can prepare transparent and flexible SERS substrates, which are rich in application scenarios. Femtosecond laser 3D printing is to use the three-dimensional processing ability of femtosecond lasers to obtain rich "hot spots" by designing the structure of SERS substrates, and then using template-guided self-assembly technology with different driving forces to deposit/evaporate metal nanoparticles at designated locations. In this paper, we first introduce the current methods for preparing SERS and then conduct a comprehensive review of the processing methods of four femtosecond lasers to prepare SERS substrates. Finally, the advantages and disadvantages of the four femtosecond laser preparation methods for SERS substrate are briefly summarized, and the development prospects of this technology are prospected, aiming to provide it for future related research.
表面增强拉曼光谱 飞秒激光直写 微纳加工 SERS基底 SERS femtosecond laser direct writing micro/nano processing SERS substrate
1 合肥工业大学资源与环境工程学院, 安徽 合肥 230009
2 合肥工业大学纳米矿物与污染控制安徽省普通高校重点实验室, 安徽 合肥 230009
3 安徽马钢矿业资源集团南山矿业有限公司, 安徽 马鞍山 243000
微生物的生长代谢往往受盐度的影响, 因此筛选出耐盐性强的菌株对含盐废水的生物处理意义重大。 选取一株从海洋分离具备耐盐异化金属还原的功能细菌(DMRB)——耐盐希瓦氏菌(Shewanella aquimarina XMS-1)作为研究对象, 探究盐度对XMS-1还原Fe3+过程及胞外聚合物变化的影响。 考察了不同盐度下XMS-1的Fe3+还原能力和胞外聚合物(EPS)的含量, 并采用三维荧光光谱(3D-EEM)、 拉曼光谱(Raman spectra)、 红外光谱(FTIR)及其对应的二维相关光谱(2D-COS)分析了XMS-1还原Fe3+过程中EPS的变化。 结果表明, 蛋白为XMS-1 EPS中主要物质, 占EPS含量的80%以上, 多糖的含量相对较少, 3%盐度条件下会促进XMS-1的EPS产量, 表明XMS-1在高盐环境中会分泌更多的EPS来保护细胞进行正常的生理活动。 Fe3+还原过程在盐度为1%~4%时得到促进, 而在盐度高于5%时则受到抑制, 过高盐度会抑制XMS-1的生长, 导致Fe3+还原率下降, 其中3%盐度下Fe3+还原率最高可达44.1%, 相对于对照组增加了2.18倍。 FTIR和Raman光谱结果显示XMS-1 EPS中含有羧基、 羟基、 氨基和羰基等金属离子氧化还原功能基团, 其中3%盐度下EPS中蛋白酰胺类和多糖类代表峰增强, 蛋白酰胺类代表峰变化显著, 含O-和N-基团参与了Fe3+还原过程。 此外3D-EEM结果显示, Fe3+还原过程结束后, EPS中色氨酸和酪氨酸两种荧光组分强度均下降, 结合2D-COS光谱结果分析, 发现色氨酸类蛋白在Fe3+还原过程中先发生了显著变化, 表明这两种荧光组分参与了Fe3+的还原过程, 其中色氨酸类蛋白在还原过程中作用更强。 本研究不仅丰富了对耐盐菌EPS胞外电子转移过程的认识, 也突出了EPS在自然环境中铁氧化还原转化的意义。
耐盐希瓦氏菌 Fe3+还原 胞外聚合物 傅里叶变换红外光谱 拉曼光谱 二维相关光谱 Salt-tolerant Shewanella aquimarina XMS-1 Fe3+ reduction Extracellular polymeric substances Fourier transform infrared spectroscopy Raman spectra Two-dimensional correlation spectroscopy 光谱学与光谱分析
2023, 43(4): 1320