1 浙江大学物理学院, 杭州 310027
2 浙江大学杭州国际科创中心, 先进半导体研究院和浙江省宽禁带功率半导体材料与器件重点实验室, 杭州 311200
3 浙江大学材料科学与工程学院, 硅材料国家重点实验室, 杭州 310027
4 浙江机电职业技术学院增材制造学院, 杭州 310053
作为制备半导体晶圆的重要工序, 线锯切片对半导体晶圆的质量具有至关重要的影响。本文以发展最成熟的硅材料为例, 介绍了线锯切片技术的基本理论, 特别介绍了线锯切片技术的力学模型和材料去除机理, 并讨论了线锯制造技术及切片工艺对材料的影响。在此基础上, 综述了线锯切片技术在碳化硅晶圆加工中的应用和技术进展, 并分析了线锯切片技术对碳化硅晶体表面质量和损伤层的影响。最后, 本文指出了线锯切片技术在碳化硅晶圆加工领域面临的挑战与未来的发展方向。
线锯切片 硬脆材料 单晶碳化硅 晶圆加工 砂浆线切割 金刚线切割 wire saw slicing brittle-and-hard material single crystal silicon carbide wafer processing slurry sawing diamond wire sawing
超构表面是由亚波长结构单元组成,它可以利用微纳制造工艺在平面上制造出来。通过改变超构单元的形貌以及排列方式可以实现对光的精确控制,从而使超构表面实现多种光学器件的功能。超构表面平面光学器件具有超薄、超轻、可芯片级集成、易于大规模量产等优点,近些年来成为了微纳光子学里最热门的研究领域之一。基于紫外光刻工艺的晶圆级加工技术是未来实现超构表面光学器件大规模量产最可行的路线之一。本文综述了近些年来基于紫外光刻技术的晶圆级超构表面光学所取得的进展。这些研究工作在不同尺寸和材料的晶圆上实现了超透镜、偏振带通滤波器、半波片、完美吸收体、光束偏转器等光学器件。
超构表面 光学 CMOS 纳米光子学 晶圆加工 Metasurface Optics CMOS Nanophotonics Wafer processing 光子学报
2021, 50(10): 1024002