作者单位
摘要
1 中国科学技术大学 生物医学工程学院(苏州)生命科学与医学部, 安徽 合肥 230026
2 中国科学院 苏州生物医学工程技术研究所, 江苏 苏州 215163
针对结直肠镜图像分辨率偏低、纹理信息偏少和细节模糊等缺点,提出了一种基于残差注意力网络的图像超分辨率重建算法SMRAN,选取结直肠息肉内窥镜图像数据集PolypsSet中的部分图像作为原始数据进行实验。首先,使用卷积网络提取低分辨率图像的浅层特征;其次,设计Res-Sobel结构对图像边缘特征进行增强;然后,通过引入不同大小的卷积核,设计多尺度特征融合模块(Multi-Scale feature Extraction Block, MEB),自适应地提取不同尺度的特征,从而得到有效的图像信息,并通过残差注意力网络将Res-Sobel模块和多尺度特征融合模块MEB进行连接;最后,通过亚像素卷积层对图像进行重建,得到最终的高分辨率图像。在尺度因子为×4时,网络在测试集上的测试结果如下: 峰值信噪比PSNR为34.25 dB,结构相似性SSIM为0.8675。实验结果表明,与传统的双三次插值算法及常用的SRCNN、RCAN等深度学习算法相比,本文提出的SMRAN对结直肠内窥镜图像具有更好的超分辨率重建效果。
内窥镜图像 超分辨率重建 残差结构 注意力机制 多尺度特征融合 索贝尔算子 endoscopic image super-resolution reconstruction residual structure attention mechanism multi-scale feature extraction Sobel operator 
中国光学
2023, 16(5): 1022
张勇 1,2郭杰龙 2,*汪帆 1,2兰海 2[ ... ]魏宪 2
作者单位
摘要
1 福州大学 电气工程与自动化学院,福建 福州 350108
2 中国科学院 福建物质结构研究所,福建 福州 350108
雨天图像会影响计算机视觉任务的效果与精度。雨天图像常常包含来自不同方向、大小、形状的雨点或雨痕,在对这些雨点、雨痕进行去除时,现有的方法往往没有考虑到雨天图像不同精细尺度下的特征信息,仅采用单一尺度进行图像去雨存在很大缺陷,无法恢复出足够清晰的视觉任务图像。受益于卷积神经网络架构的强大特征提取能力,本文提出了一种端到端的多级联递进卷积结构算子,该算子包含4层卷积层,通过阶梯化连接构成一个整体模块,该模块可以针对多尺度场景下的雨天进行特征提取并整合。将该算子模块嵌入到渐进循环网络结构中,利用循环结构多次去除雨纹,最终有效还原出接近真实图像的无雨图像。该方法在现有的人工合成雨图数据集Rain100H、Rain100L、Rain800与自动驾驶领域合成雨图数据集BDD1000上进行了对比实验。实验结果表明,该算法在4个数据集上的PSNR值达到了30.70,37.91,27.63,35.74 dB,SSIM值达到了0.914,0.980,0.894,0.977。通过真实雨图数据集去雨结果的可视化展示,充分验证了本文方法在去雨任务上的有效性。
图像去雨 多级联递进卷积结构 卷积神经网络 深度学习 多尺度特征 残差结构 image rain removal multi-cascade progressive convolution structure convolutional neural network deep learning multi-scale feature residual structure 
液晶与显示
2023, 38(10): 1409
作者单位
摘要
湖南科技大学计算机科学与工程学院,湖南 湘潭 411201
手术与化疗作为肝癌的主要治疗手段需要精确提取肝脏病变区域。针对目前肝肿瘤分割方法存在的小型肿瘤丢失、肿瘤边界分割模糊、分割严重错误等问题,提出一种融合注意力机制与残差可形变卷积的肝肿瘤分割方法。以U-Net为主干网络,在编码卷积层末尾增加一条带有反卷积与激活函数的残差路径,该路径与上层跳跃连接相连,解决池化与反卷积操作中的信息损失造成的小目标分割缺失与边界模糊问题;利用可形变卷积增强模型对肿瘤边界的特征提取能力;在跳跃连接层中添加一定数量的卷积层,弥补简单跳跃连接在特征融合时造成的语义空白;通过双注意力机制,模型更加关注肿瘤特征;采用混合损失函数,该函数在保证训练稳定的情况下解决类不平衡造成的分割性能下降的问题。在肝脏肿瘤公开数据集(LITS)上进行实验,所提方法的肿瘤分割Dice系数达85.2%,分割性能优于其他对比网络,能够达到辅助医疗诊断的要求。
肝癌 肿瘤分割 U-Net 残差结构 注意力 liver cancer tumor segmentation U-Net residual structure attention 
激光与光电子学进展
2023, 60(12): 1210001
作者单位
摘要
1 桂林电子科技大学计算机与信息安全学院, 广西 桂林 541004
2 北京邮电大学人工智能学院, 北京 100876
3 北京邮电大学国际学院, 北京 100876
近红外光谱分析技术依赖于表征光谱向量和预测目标之间关系的化学计量学方法。 然而, 样品的光谱由信号和各种噪声组成, 传统化学计量学方法较难直接提取光谱的有效特征, 并为复杂的预测任务建立具有较强泛用性的校正模型。 进一步地, 受限于仪器间的差异, 在一台仪器上建立的模型应用于另一台仪器时, 难以取得相同的定量分析结果。 为此, 提出了一种基于卷积神经网络和迁移学习的定量分析建模及模型传递方案, 以提高模型在单仪器和跨仪器上的预测性能。 在卷积神经网络的基础上, 一种结合多尺度特征融合和残差结构, 名为MSRCNN的先进模型被设计, 并在主仪器上展现了卓越的预测能力。 然后, 设计了四种的基于fine-tune模型迁移策略, 将在主仪器上建立的MSRCNN模型迁移到从仪器。 在药品和小麦的公开数据集上的实验结果表明, MSRCNN在主仪器上的RMSE和R2分别为2.587, 0.981和0.309, 0.977, 优于PLS, SVM和CNN。 在利用30个从仪器的样本微调主仪器建立的模型后, 迁移MSRCNN中的卷积层和全连接层的方案取得了最好效果, 其RMSE和R2可分别达到2.289, 0.982和0.379, 0.965。 增加参与模型微调的从仪器样本, 可进一步提高性能。
近红外光谱 深度学习 迁移学习 多尺度融合 残差结构 模型传递 Near-infrared spectroscopy Deep learning Transfer learning Multi-scale fusion Residual convolution network Model transfer 
光谱学与光谱分析
2023, 43(1): 310
作者单位
摘要
天津大学电气自动化与信息工程学院,天津 300072
交通标志检测是自动驾驶系统的一项重要功能,当前先进的交通标志检测器大多采用Anchor-Based网络模型,根据锚框遍历所有潜在的目标位置。为了减少锚框带来的计算开销和过多的超参数设置,提出了一种基于编码-解码结构的Anchor-Free交通标志检测算法。为了增加解码模块的特征表征能力,在解码模块中引入残差增强分支。为了高效地提取和利用多尺度特征,设计了特征融合子网络,提升对多尺度目标的检测能力,并使用Ghost轻量化模块提取多尺度特征图,不显著引进运算量。在Tsinghua-Tencent 100K数据集上进行验证,所提算法实现了92.5%的召回率和90.3%的准确率,模型的参数量和模型大小分别为1.61×107和64.4 Mbit。实验结果表明,与主流目标检测算法相比,所提算法的检测精度较高,计算开销较低,在综合性能上具有优越性。
机器视觉 交通标志检测 Anchor-Free 残差结构 多尺度特征融合 machine vision traffic sign detection Anchor-Free residual structure multiscale feature fusion 
激光与光电子学进展
2022, 59(24): 2415002
作者单位
摘要
上海海洋大学信息学院,上海 201306
针对高光谱图像分类过程中存在的标记样本需求量大和分类精度要求高等问题,提出了一种利用残差生成对抗网络(GAN)的高光谱图像分类方法。该方法以生成对抗网络为基础,使用包含上采样层和卷积层构成的8层残差网络替换生成器的反卷积层网络结构,提高数据的生成能力,使用34层残差卷积网络替换判别器的卷积层网络结构,提高特征提取能力。以Pavia University、Salinas及Indian Pines数据集为实验数据,将所提方法与GAN、CAE-SVM、2DCNN、3DCNN、ResNet进行了比较。实验结果表明,所提方法在总体分类精度、平均分类精度和Kappa系数上均有显著提高,其中总体分类精度在Indian Pines数据集上达到了98.84%,较对比方法分别提高了2.99个百分点、22.03个百分点、12.91个百分点、4.99个百分点、1.79个百分点。所提方法在网络中加入残差结构,增强了浅层网络与深层网络的信息交流,可提取高光谱图像的深层次特征,提高了高光谱图像分类的精度。
图像处理 高光谱图像 分类 深度学习 生成对抗网络 残差结构 image processing hyperspectral image classification deep learning generative adversarial network residual structure 
激光与光电子学进展
2022, 59(22): 2210008
邓子青 1王阳 1张兵 1丁召 1[ ... ]杨晨 1,*
作者单位
摘要
1 贵州大学大数据与信息工程学院半导体功率器件可靠性教育部工程研究中心,贵州 贵阳 550025
2 中国科学院苏州纳米技术与纳米仿生研究所,江苏 苏州 215123
为充分提取高光谱图像(HSI)的光谱空间信息特征,实现HSI的高精度地物分类,提出端到端的多尺度特征融合残差(MFFI)模块。该模块结合了3D多尺度卷积、特征融合以及残差连接3种手段,实现了HSI多尺度光谱空间特征的联合提取。因模块具有端到端特性,可通过堆叠多个MFFI模块得到具有提取深层特征能力的MFFI网络。该网络在Salinas、Indian Pines和University of Pavia 3个HSI数据集的平均总体准确率为99.73%,平均准确率为99.84%,平均卡帕系数为0.9971。结果表明:MFFI模块可以有效提取不同类型地物数据集的光谱空间特征,并取得良好的分类结果。
高光谱图像分类 残差结构 多尺度特征融合 光谱空间特征提取 卷积神经网络 hyperspectral image classification residual structure multi-scale feature fusion spectral-spatial feature extraction convolutional neural network 
激光与光电子学进展
2022, 59(18): 1810014
陈文豪 1何敬 1,*刘刚 1,2
作者单位
摘要
1 成都理工大学地球科学学院,四川 成都 610059
2 成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
近年来,以卷积神经网络为代表的深度学习方法因不用进行复杂的数据预处理和特征设计逐渐成为高光谱图像分类领域的研究热点。在现有的神经网络模型基础上,结合高光谱图像数据特点,提出了一种注意力卷积神经网络模型。该模型通过残差结构构建深度卷积神经网络提取空谱特征,引入通道注意力机制对提取的特征进行重标定。根据特征重要性的不同,注意力机制对不同通道上的特征赋予不同的权重,突出重要特征,抑制次要特征,从而提高分类的精度。在两个公开的高光谱数据集Indian Pines和Pavia University上进行了实验。当数据集的空间邻域大小设置为19×19,Indian Pines以3∶1∶6的比例划分样本,Pavia University以1∶1∶8的比例划分样本时,数据集的分类精度最优,平均总体分类精度为99.55%,平均分类精度为99.31%,平均Kappa系数为99.45%。实验结果表明,引入残差结构的深度卷积神经网络可以提取高光谱图像的深层空谱特征,注意力机制对特征进行重新标定,强化了重要特征,从而有效提高了高光谱图像的分类精度。
成像系统 高光谱图像 卷积神经网络 残差结构 注意力机制 imaging systems hyperspectral image convolution neural network residual structure attention mechanism 
激光与光电子学进展
2022, 59(18): 1811001
作者单位
摘要
石家庄铁道大学信息科学与技术学院, 河北 石家庄 050043
针对目前隧道内漏缆卡具检测数据量大、人工检测效率低的问题,提出了一种基于改进single shot MultiBox detector(SSD)算法的隧道漏缆卡具检测算法。该算法使用不同尺度的特征图检测卡具目标,并在网络宽度和网络深度上对SSD网络结构进行改进。结合Inception结构,增加网路宽度;采用残差结构,在提高网络深度的同时优化网络深度结构;使用深度可分离卷积和1×1卷积结构,减少模型参数量,改善模型结构,从而提高模型检测效率。将改进后的模型应用于隧道漏缆卡具图像检测,实验结果表明,该算法检测的平均准确率达到了86.6%,检测速度达到了26.6 frame/s,相较于原始SSD算法和MobileNet SSD算法,具有明显优势。
机器视觉 图像处理 卡具检测 SSD 残差结构 深度可分离卷积 machine vision image processing fixture detection SSD residual structure depthwise separable convolution 
激光与光电子学进展
2021, 58(22): 2215005
作者单位
摘要
重庆理工大学 机械工程学院, 重庆 400054
针对传统目标检测方法不能兼顾目标识别精度和检测实时性, 且在实际生产复杂工况下识别效果不佳的问题, 提出一种基于Inception-SSD框架的零件深度学习识别方法。首先, 提出了融合Inception预测结构的SSD优化框架Inception-SSD, 将Inception网络结构引入到SSD网络额外层中, 并使用批量标准化模块(BN)和残差结构连接, 从而捕获更多目标信息而又不会增加网络复杂性, 以提高检测准确率而又不影响其检测速度, 并增加算法鲁棒性; 然后提出在原损失函数基础上增加排斥损失项以改进损失函数, 同时采用一种基于加权算法的非极大值抑制方法, 克服模型表达能力不足的缺点。最后, 将改进前后SSD算法在自制零件数据集上进行训练和测试, 实验结果表明: 本文方法在实际生产过程复杂情况下检测准确率达到97.8%,相比原SSD算法提升11.7%, 检测速率41 frame/s。在提高检测精度同时还保证了实时性, 能够满足实际生产环境零件检测需求。
深度学习 目标检测 零件识别 Inception结构 残差结构 deep learning part detection Inception structure residual structure 
光学 精密工程
2020, 28(8): 1799

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!