作者单位
摘要
1 上海大学微电子学院,上海 200072
2 中国科学院上海光学精密机械研究所薄膜光学实验室,上海 201800
集成电路的生产主要依靠光刻技术为主的工艺体系,采用波长为13.5 nm光源的极紫外光刻是当前最先进的商用规模量产光刻技术,为集成电路的发展带来前所未有的进步。根据瑞利判据,为进一步提高分辨率,以波长6.X nm为光源的下一代“超越极紫外”光刻成为研究热点。多层膜反射镜是极紫外光刻机光学系统中的关键器件,其反射率和寿命决定光刻机的曝光效率与成像质量。综述了6.X nm多层膜的研究进展,对近年来6.X nm波段的极紫外光源以及多层膜的设计、制备和表征等方面进行了介绍和分析。重点阐述了6.X nm多层膜的界面优化方法,并讨论了多层膜在工程应用中的老化和性能衰减等问题,对面向未来商业应用的方向做出了展望。旨在为我国从事先进光刻等相关研究工作的学者、工程师等提供重要参考。
先进光刻 超越极紫外 多层膜 反射率 界面工程 
中国激光
2024, 51(7): 0701010
作者单位
摘要
青岛大学 物理科学学院, 青岛 266071
聚氧化乙烯(PEO)基固体电解质具有成本低、对锂稳定、易于大规模生产等优点, 是固态锂电池最有前途的固体电解质。然而, PEO对高压正极不稳定, 严重限制了其在高能量密度领域的应用。本研究在LiNi0.6Co0.2Mn0.2O2 (NCM)正极颗粒上部分包覆环化聚丙烯腈(cPAN)纳米层作为电子导电层, 在NCM/PEO界面上引入离子液体作为离子导电通道, 用以提高PEO与高压NCM正极的相容性。其中, cPAN层不仅在物理上隔离了PEO电解质与NCM正极的直接接触, 而且cPAN中具有非局域的sp2 π键, 有助于正极内部的电子传输。同时, 高离子电导率的离子液体的流动性较高, 可以充分润湿正极侧界面, 并在循环过程中分解为富LiF和Li3N的CEI层, 进一步限制PEO电解质的氧化分解。基于上述复合策略的固态NCM/Li电池可在0.1C (1C=0.18 A·g-1), 4.30 V截止电压下稳定循环100次, 且容量保持率可达85.3%。本研究通过表面包覆和界面修饰, 为提高PEO基电解质对高压正极的稳定性提供了可行方案。
聚氧化乙烯 环化 高电压正极 界面工程 固态锂电池 poly(ethylene oxide) cyclization high-voltage cathode interface engineering solid-state lithium battery 
无机材料学报
2023, 38(12): 1466
作者单位
摘要
哈尔滨工业大学材料科学与工程学院,黑龙江 哈尔滨 150001
铅基钙钛矿太阳电池的优异器件性能归因于其显著的光学和电子性质,其能量转换效率已从最初的约3.8%大幅提高到25%以上。尽管铅基钙钛矿太阳电池得到了快速的发展,但由于铅原子的毒性及其在热、光和湿度等条件下的不稳定性,阻碍了该类型钙钛矿光伏技术的实际应用。因此,寻找无铅、无毒和环保的卤化物钙钛矿来取代铅基材料在实际中的应用至关重要。无铅卤化物钙钛矿的研究是目前的研究热点之一。本文综述了无铅双钙钛矿Cs2AgBiBr6在钙钛矿太阳电池中的应用,介绍了Cs2AgBiBr6的结构与材料制备的方法,讨论了钙钛矿太阳电池的器件性能,分析了提高该类型光伏器件性能的相关策略,探讨了无铅钙钛矿面临的挑战以及发展方向。
光学器件 钙钛矿太阳电池 光学薄膜 带隙工程 界面工程 
激光与光电子学进展
2023, 60(7): 0700004
作者单位
摘要
1 吉林大学 电子科学与工程学院, 吉林 长春 130012
2 上海科技大学 信息科学与技术学院, 上海 201210
体异质结聚合物太阳能电池是很有前途的替代化石能源进行能量转换的光伏技术。合成新材料、优化器件结构以及界面工程等方式都能有效提高聚合物太阳能电池的能量转换效率。本文从材料选取、界面掺杂以及界面修饰三个方面阐述界面工程在聚合物太阳能电池中的应用。界面修饰能够促进载流子的产生和输运, 证明界面工程对于提高电荷提取效率、钝化表面缺陷和提升电导率等具有重要意义。
聚合物太阳能电池 界面工程 体异质结 能量转换效率 polymer solar cells interface engineering bulk heterojunction power conversion efficiency 
光学 精密工程
2020, 28(9): 1893
妙亚 1,2董素娟 1,2刘少伟 1,2王亚凌 1,2[ ... ]印寿根 1,2
作者单位
摘要
1 天津理工大学 显示材料与光电器件教育部重点实验室, 天津 300384
2 天津理工大学材料科学与工程学院 天津市光电显示材料与器件重点实验室, 天津 300384
3 天津大学 化工学院, 天津 300072
4 中国电子科技集团第18研究所, 天津 300384
为了探究PVK对倒置平面异质结钙钛矿太阳能电池电子传输层的影响, 向电子传输层PCBM中添加了一种富电子的聚乙烯基咔唑(PVK)。采用原子力显微镜、PL光谱对薄膜进行了表征。实验结果表明: 少量PVK的添加提高了覆盖在钙钛矿薄膜上PCBM层的平整度。当PVK的添加质量分数为4%时得到最佳器件效率, 相比于纯PCBM作为电子传输层的器件, 器件效率由(5.11±0.14)% 提升到(9.08±0.46)%。当PVK的添加质量分数大于4%时, 粗糙度又趋于变大。PL光谱显示, 少量PVK的加入使钙钛矿/电子传输层薄膜的PL强度降低, 并使PL峰蓝移。研究表明: 向PCBM中掺杂适量PVK能够改善钙钛矿/电子传输层/Al的界面接触, 减少漏电流, 并能够减少钙钛矿表面陷阱和晶界缺陷, 减少电荷复合, 从而提高了器件性能。
钙钛矿 掺杂 界面工程 聚乙烯基咔唑 缺陷 perovskite solar cells doping interface engineering poly(n-vinylcarbazole) trap states 
发光学报
2017, 38(9): 1210
作者单位
摘要
美国华盛顿大学(西雅图)材料科学与工程系, 华盛顿 98195-2120, 美国
有机聚合物和钙钛矿杂化物在合成控制、加工及属性调控的进展显著地增强了其太阳能电池性能。聚合物和杂化太阳能电池的性能十分依赖材料吸收光子、激子离解、电荷传输以及在金属/有机/金属氧化物或金属/钙钛矿/金属氧化物界面的电荷收集的效率。介绍了如何通过有效地整合材料设计以及界面与器件工程以显著提高聚合物和杂化钙钛矿型太阳能电池性能(转换效率>18%)。还介绍了一些关于制备串联和半透明太阳能电池的新型器件结构和光学工程策略,以发挥聚合物和钙钛矿太阳能电池的最大潜能。
能源 钙钛矿太阳能电池 材料设计 界面工程 器件工程 energy perovskite solar cell materials design interface engineering device engineering 
光学与光电技术
2017, 15(2): 1
作者单位
摘要
1 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春130033
2 中国科学院清洁能源前沿研究重点实验室 北京新能源材料与器件重点实验室 中国科学院物理研究所 北京凝聚态物理国家实验室, 北京100190
3 南京大学 电子科学与工程学院和南京微结构国家实验室(筹), 江苏 南京210046
4 中国矿业大学 物理学院, 江苏 徐州221116
5 东南大学 生物科学与医学工程学院 生物电子学国家重点实验室, 江苏 南京210096
6 中山大学 光电材料与技术国家重点实验室, 广东 广州510275
7 香港科技大学 物理系, 香港999077
8 吉林大学电子科学与工程学院 集成光子学国家重点实验室, 吉林 长春130012
9 大连理工大学 物理与光电工程学院, 辽宁 大连116023
Ⅱ-Ⅵ族直接带隙化合物半导体氧化锌(ZnO)的禁带宽度为3.37 eV, 室温下激子束缚能高达60 meV, 远高于室温热离化能(26 meV), 是制造高效率短波长探测、发光和激光器件的理想材料。历经10年的发展, ZnO基半导体的研究在薄膜生长、杂质调控和器件应用等方面的研究获得了巨大的进展。本文主要介绍了以国家“973”项目(2011CB302000)研究团队为主体, 在上述方面所取得的研究进展, 同时概述国际相关研究, 主要包括衬底级ZnO单晶的生长, ZnO薄膜的同质、异质外延, 表面/界面工程, 异质结电子输运性质、合金能带工程, p型掺杂薄膜的杂质调控, 以及基于上述结果的探测、发光和激光器件等的研究进展。迄今为止, 该团队已经实现了薄膜同质外延的二维生长、硅衬底上高质量异质外延、基于MgZnO合金薄膜的日盲紫外探测器、可重复的p型掺杂、可连续工作数十小时的同质结紫外发光管以及模式可控的异质结微纳紫外激光器件等重大成果。本文针对这些研究内容中存在的问题和困难加以剖析并探索新的研究途径, 期望能对ZnO材料在未来的实际应用起到一定的促进作用。
氧化锌 氧化镁锌 外延薄膜 表面/界面工程 紫外探测器 ZnO MgZnO molecular beam epitaxy surface/interface engineering ultraviolet photodetector 
发光学报
2014, 35(1): 1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!