1 西北工业大学物理科学与技术学院,陕西 西安 710129
2 西北工业大学光场调控与信息感知工业和信息化部重点实验室,陕西 西安 710129
表面等离激元因其极强的束缚光场能力,成为亚波长尺度下研究光与物质相互作用的理想平台,也是构建未来小型化、低功耗、高便携光电子器件的核心单元。更多维度、更加精确和灵活地调控等离激元的模式性质对推动其基础和应用研究至关重要。近年来,光场调控技术的发展,拓展了人们利用光场的维度,也赋予光场更强大的操控等离激元模式的能力。本文简述了矢量光场与等离激元模式作用的基本理论与物理机制,回顾了近年来矢量光场调控等离激元模式激发、耦合和远场辐射的研究进展,并介绍了相关研究在增强光谱、纳米颗粒光捕获、纳米位移传感等方面的应用。
表面等离激元 矢量光场 模式耦合 单向散射 surface plasmons vector beams mode coupling unidirectional scattering 光学学报
2023, 43(16): 1623002
西安交通大学 物理学院 物质非平衡合成与调控教育部重点实验室 陕西省量子光学与光电量子器件重点实验室,西安 710049
偏振在光与物质相互作用中扮演着重要的角色。过去几十年里,绝大多数研究工作都基于偏振单一且均匀分布的标量光场。近年来,随着光场产生与操控技术的不断发展,空间偏振非均匀分布的矢量光场逐渐引起人们的关注。矢量光场具有多维可调控的自由度以及独特的焦场属性,在经典与量子通讯、光学操控和显微成像等领域具有重要的研究价值与广泛的应用前景。矢量光场与物质相互作用的研究不仅丰富了人们对光场矢量特性的认识,也推动了基于不同介质实现光场调控的新发展。原子介质对光场偏振具有较高的敏感性,容易形成原子极化,并且具有更多的调控自由度,是探索矢量光场特性与实现矢量光场调控的理想平台。本文回顾了近年来矢量光场与原子介质相互作用的研究进展,重点介绍了原子介质与矢量光场在空间极化调控、相干调控、频率转换和非线性传输等研究领域的相关工作,并对该领域的未来发展趋势进行了展望。
矢量光场 原子介质 各向异性 量子相干 四波混频 Vector beam Atomic medium Anisotropy Quantum coherence Four-wave mixing 光子学报
2022, 51(10): 1026001
1 南京航空航天大学 理学院, 南京 211106
2 南京航空航天大学 空间光电探测与感知工业和信息化部重点实验室, 南京 210016
为了实现电介质超表面的聚焦功能和对光场相位的调控, 采用几何相位调制原理设计微元结构及空间分布, 以SiO2为基底、亚波长TiO2椭圆柱的六边形晶胞为基本结构, 设计了一种相位突变呈抛物线梯度分布的聚焦超表面, 适用于480nm~580nm波段。基于此结构进行了理论分析和实验验证, 发现该结构对线偏振光聚焦, 其归一化后的半峰全宽约为428nm, 而对矢量光聚焦约为258nm, 获得了更出色的聚焦效果。研究了3阶和4阶Ince-Gaussian矢量光场通过该超表面后的聚焦特性, 得到了聚焦场能保持入射矢量光场的基本空间结构, 但中心结构信息会有损失的结果, 即Ince-Gaussian矢量涡旋光场由于涡旋相位的存在, 聚焦后会呈现破缺的空间结构。结果表明, 超表面结构和入射光场矢量结构之间的匹配程度是影响聚焦特性的重要因素。该研究为理解复杂矢量光场的超表面聚焦机理提供了参考。
衍射 超表面 几何相位 矢量光场 涡旋相位 diffraction metasurface geometric phase vector optical field Ince-Gaussian Ince-Gaussian vortex phase
红外与激光工程
2021, 50(9): 20210447
1 南开大学 电子信息与光学工程学院 现代光学研究所,天津300350
2 天津市微尺度光学信息技术科学重点实验室,天津,300350
3 天津市光电传感器及传感网络技术重点实验室,天津,0050
4 上海工程技术大学 数理与统计学院,上海201620
5 南京师范大学 计算机与电子信息学院,南京210023
6 东南大学 先进光子学中心,南京21009
7 山东师范大学 光场调控与应用协同创新中心,济南250358
基于麦克斯韦应力张量理论,对多边形金纳米粒子在聚焦场下的光力特性进行了研究。以三角形金纳米粒子为例,从粒子在聚集场中的受力情况出发,分别研究了具有圆对称能量分布的聚焦场和具有三角形能量分布的聚焦场对三角形金纳米粒子的捕获特性。研究结果表明,当使用圆对称聚焦场时,可对边长为50~350 nm的三角形金纳米粒子实现稳定捕获;当使用三角形聚焦场时,在粒子以和聚焦场形状匹配的角度进入聚焦场的情况下,可对边长为100~350 nm的三角形金纳米粒子实现稳定捕获。将圆对称聚焦场和三角形聚焦场对三角形金纳米粒子的捕获特性进行比较,发现三角形聚焦场在x方向的捕获力要强于圆对称聚焦场;而在y方向,三角形聚焦场对粒子的捕获范围要大于圆对称聚焦场。该工作研究了三角形的金属纳米粒子在不同形状聚焦场下的光力捕获特性,为基于非球形金属粒子的光学操纵在拉曼光谱超分辨成像、粒子微加工等领域的应用奠定了理论基础。
光镊 三角形金纳米粒子 径向矢量光场 紧聚焦 光力 Optical tweezers Triangular gold nano-particles Radially polarized beam Tightly focusing Optical force