激光与光电子学进展
2023, 60(19): 1925001
中国激光
2023, 50(18): 1813008
1 北京信息科技大学 光电信息与仪器北京市工程研究中心,北京 100016
2 北京信息科技大学 仪器科学与光电工程学院,北京 100192
3 中国空间技术研究院 北京卫星制造厂有限公司,北京 100094
以多元金属纳米薄膜(金、银)为基底,利用飞秒激光加工技术制备得到多元等离子体纳米结构,并研究了其局域表面等离子体共振效应( Local Surface Plasmon Resonance,LSPR)和表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)性能。利用时域有限差分(Finite Difference Time Domain,FDTD)软件模拟了不同情况下(单层金膜、金银双层金属薄膜的平面以及阵列结构)的电场分布情况。根据仿真结果,相较于平面金属膜来说,飞秒激光制备的微纳结构阵列附近区域产生电磁场增强,集中在结构边缘处,且其强度变化与预期结果基本保持一致。此外,使用浓度为10−4 M和10−6 M的罗丹明(R6G)溶液进行SERS性能测试。测试的结果表明,单层平面金膜基本没有SERS峰值信号出现,而单层金膜上制备的等离子体纳米结构附近出现峰值信号,双层金属薄膜上制备的等离子体纳米结构展现出更高的SERS峰值信号。多元金属等离子体纳米结构展示出更强的局域表面等离子体共振效应,从而在表面增强拉曼散射、光催化、生物传感等领域具有广泛的应用。
飞秒激光加工 多元等离子体纳米结构 局域表面等离子体共振 表面增强拉曼散射 femtosecond laser processing multiple plasma nanostructures LSPR SERS 红外与激光工程
2023, 52(4): 20220522

吉林大学电子科学与工程学院,集成光电子学国家重点实验室,吉林 长春 130012
Overview: With the development of industry, laser fabrication has become one of the important technologies for welding, cutting, surface processing, and other advanced manufacturing areas. At the same time, the pursuit of structures miniaturization, devices integration, and high precision has put forward more stringent requirements for laser fabrication technologies. Due to the advantages of stable mechanical and chemical properties and unique photoelectric properties, hard and brittle materials have been widely used in aerospace, the photoelectric industry, et al. Laser fabrication is an ideal technology for hard and brittle materials processing due to its high precision, high energy, and non-contact properties. In order to achieve the removal of hard and brittle materials, high laser energy is usually required, resulting in low fabrication accuracy and poor surface quality. As an improved laser processing method, liquidassisted laser fabrication can effectively improve fabrication accuracy and surface quality. The processing characteristics and material removal principles of three different liquid-assisted laser processing technologies are summarized in this review. According to the different functions of the medium through which the laser penetrates and the kinds of liquid, liquid-assisted laser fabrication technology can be divided into Laser ablation in liquid (LAL), laser-induced backside wet etching (LIBWE), and etching-assisted laser modification (EALM). The auxiliary liquid of Laser ablation in liquid is mostly water, which mainly plays the role of cooling and removing debris. The auxiliary liquids used by laser-induced backside wet etching include organic solvents, acid-base solutions, inorganic salts, and other liquids, which play different roles according to different liquids. The etching-assisted laser modification mainly uses an acid or alkaline solution as an auxiliary liquid to remove laser-modified materials. Different methods and auxiliary liquids have different mechanisms in the methods. Therefore, almost any material can be processed by choosing suitable methods and auxiliary liquids, including photosensitive glass, silicon crystal, sapphire, and other transparent hard brittle materials. Here, we summarize the fabrication technologies and fabrication parameters for different materials. The development and applications of liquid-assisted laser fabrication technologies in the fields of micro-optical components, microfluidic devices, and drilling and cutting are introduced. Finally, the challenges of the technology are discussed.
激光加工 硬脆材料 液体辅助制造 微/纳米结构 laser fabrication hard and brittle materials liquid assisted fabrication micro/nano structures
1 沈阳化工大学, 辽宁省化工应用技术重点实验室, 沈阳 110142
2 沈阳化工大学, 辽宁省镁钙无机功能材料工程研究中心, 沈阳 110142
3 沈阳化工大学, 沈阳市镁钙资源利用技术重点实验室, 沈阳 110142
本文以硝酸铜为原料, 采用氨气沉淀法制备了多种形貌的碱式硝酸铜。研究了反应过程中温度、通氨时间和通氨速率对产品微观形貌和产品收率的影响, 在最佳反应条件, 即反应时间40 min、反应温度90 ℃、通氨速率500 mL/min时, 产品收率达到50%, 产品形貌为类六方片状, 分散性好, 粒径分布接近于正态分布。在产品中发现由纳米级碱式硝酸铜颗粒紧密排布而成的二维纳米网状结构, 上面分布有纳米级微孔。采用Morphology及CASTEP程序对碱式硝酸铜生长习性进行理论分析, 计算结果与实验吻合, 由温度引起的(001)晶面显露程度变化是导致宏观形貌不规则的重要因素。
硝酸铜 碱式硝酸铜 氨气沉淀法 纳米结构 形貌 copper nitrate basic copper nitrate ammonia precipitation nano-structure morphology
1 太原理工大学 物理学院,山西 太原 030024
2 太原理工大学 光电工程学院,山西 太原 030024
3 兴县经开区铝镁新材料研发有限公司,山西 吕梁 035300
宽谱响应光电探测器在图像传感和光通信等领域应用前景广阔。金属微纳结构通过激发表面等离激元共振效应可高效产生热载流子,将它们与宽带隙半导体构成异质结构,便可利用热载流子开发出低成本宽谱响应光电探测器。研究设计了一种基于Au/TiO2复合纳米结构的热电子光电探测器。其中TiO2层经退火后形成尺度约为百纳米的凹凸结构,Au纳米颗粒层与用作电极的保形Au膜共同组成了激发表面等离激元共振的纳米结构。由于Au/TiO2复合纳米结构的协同作用,该器件在400~900 nm范围内具有宽谱光吸收性能,器件的平均光吸收效率为33.84%。在此基础上,该器件能够探测TiO2本征吸收波段以外的入射光子。例如,在600 nm波长处,器件的响应率为9.67 μA/W,线性动态范围为60 dB,器件的上升/下降响应速度分别为1.6 ms和1.5 ms。此外,利用有限元法进行了仿真计算,通过电场分布图验证了Au/TiO2复合纳米结构中所激发的丰富表面等离激元共振效应是其实现宽谱高效探测的原因所在。
光电探测器 表面等离激元 金属纳米结构 热电子 宽谱 photodetectors surface plasmon resonance metal nanostructure hot-electrons wide spectrum 红外与激光工程
2023, 52(3): 20220464
1 北方民族大学材料科学与工程学院,宁夏硅靶及硅碳负极材料工程技术研究中心,银川 750021
2 银川艾尼工业科技开发股份有限公司,银川 750299
3 青岛睿海兴业管理咨询服务有限公司,青岛 266041
作为新一代低成本、高效率的光伏器件,以有机卤化铅CH3NH3PbX3(MAPbX3,X=Br、I、Cl)为光吸收层的钙钛矿太阳能电池(PSCs)相比于其他类型的光伏器件,具有原料丰富、工艺简单等特点。在较短的时间内,该类电池效率已由3.8%迅速攀升至25.7%,几乎可以媲美商用硅太阳能电池,成为能源应用领域的一颗新星。氧化锌(ZnO)因其具有材料易于加工、电子迁移率高、制造成本低廉且形貌结构多样等优点,被作为该类电池较为重要的一种电子传输层(ETL)而被广为研究。本文主要以不同结构的ZnO纳米薄膜ETL作为研究对象,对其在PSCs中的应用进行了总结,详细介绍了基于不同形貌ZnO纳米结构PSCs的研究进展,分析了该类电池面临的主要问题与解决处理方式,并对未来的发展趋势进行了展望。
钙钛矿太阳能电池 电子传输层 纳米结构 光电转换效率 perovskite solar cell ZnO ZnO electron transport layer nano structure CH3NH3PbX3 CH3NH3PbX3 photoelectric conversion efficiency