激光与光电子学进展
2023, 60(10): 1010018
长春理工大学 生命科学技术学院, 吉林 长春 130022
针对脑肿瘤良恶性分类过程复杂、分类准确率不高等问题,提出了一种基于多尺度特征与通道特征融合的分类模型。该模型以ResNeXt网络为主干网络,首先,将基于空洞卷积的多尺度特征提取模块代替第一层卷积层,利用膨胀率获取不同感受野的图像信息,将全局特征与局部显著特征相结合;其次,添加通道注意力机制模块,融合特征通道信息,提高对肿瘤区域的关注度,降低对冗余信息的关注度;最后,采用学习率的线性衰减策略、图像的标签平滑策略以及基于医学图像的迁移学习策略的组合优化提高模型的学习能力和泛化能力。在BraTS2017和BraTS2019数据集中进行实验,准确率分别达到98.11%和98.72%。与经典模型和其他先进方法相比,该分类模型能够有效地减少分类过程的复杂度,提高脑肿瘤良恶性分类的准确率。
脑肿瘤 多尺度特征 通道注意力机制 深度学习 brain tumor multi-scale feature channel attention mechanism deep learning
激光与光电子学进展
2021, 58(24): 2400003
河北师范大学 新闻中心, 河北 石家庄 050024
为了提高磁共振图像分割的准确度, 提出一种基于残差网络和小波变换的磁共振图像分割方法。采用离散小波变换对核共振图像的不同序列进行融合, 使融合图像包含更加丰富的纹理信息和结构信息; 提出了包含通道注意力模块和空间注意力模块的残差网络模型, 使网络重点关注于目标分割区域, 并加入残差块来缓解深度神经网络的梯度消失问题。最终在公开的Brain Tumor Segmentation Challenge 2015数据集上完成了验证实验, 结果显示该方法在对完整肿瘤区域、核心肿瘤区域及增强肿瘤区域的平均 Dice 相似性系数均取得了较好的效果。
医学图像 核共振图像 图像分割 脑肿瘤检测 残差网络 离散小波变换 medical image magnetic resonance image image segmentation brain tumor detection residual network discrete wavelet transformation
天津大学电气自动化与信息工程学院, 天津 300072
提出了一种基于深度学习的3D脑肿瘤核磁共振图像(MRI)自动分割方法。为了降低分割难度,采用三级级联网络的策略分割脑肿瘤的三个子区域;为了进一步提高三维分割的精度,采用帧间卷积和帧内卷积,加入额外的多层特征融合机制和空洞卷积;为了进一步细化分割结果,将条件随机场构建的循环神经网络整合到网络结构中。在模型训练中结合了两种损失函数,进一步提高了准确率。该方法在BraTS 2018 数据集上进行验证,对于脑肿瘤整体、肿瘤核以及增强肿瘤,其分割结果的Dice系数分别达到了0.9093、0.8254 和 0.7855,Hausdorff距离达到3.8188、7.8487和4.3264,优于大多数脑肿瘤图像分割方法。
图像处理 脑肿瘤分割 多层特征融合 空洞卷积 条件随机场 image processing gliomas segmentation multi-levels feature fusing dilated convolution conditional random fields 激光与光电子学进展
2021, 58(8): 0810020
近几年,深度学习在生物医学图像处理中的应用得到了广泛关注。从深度学习的基本理论和医学领域应用出发,提出了一种改进的三维双路径脑肿瘤图像分割网络,用于提高核磁共振成像序列中对脑肿瘤各个区域的检测精度。所提算法以3D-UNet为基础架构,首先,使用改进的双路径网络单元构成类似于UNet的编码-解码器结构,该网络单元在保留原有特征的同时,还可以在脑肿瘤的纹理、形状和边缘等方面产生新特征,来提高网络分割精度;其次,在双路径网络模块中加入多纤结构,在保证分割精度的同时减少了参数量;最后,在每个网络模块中的组卷积之后加入通道随机混合模块来解决组卷积导致的精度下降问题,并使用加权Tversky损失函数替代Dice损失函数,提高了小目标的分割精度。所提模型的平均Dice_ET、Dice_WT和Dice_TC均优于3D-ESPNet、DeepMedic、DMFNet等算法。该研究结果具有一定的现实意义和应用前景。
图像处理 神经网络 双路径网络 脑肿瘤图像分割 加权损失函数 image processing neural networks dual-path network brain tumor image segmentation weighted-loss function
激光与光电子学进展
2021, 58(4): 0410022
激光与光电子学进展
2020, 57(14): 141020
1 内蒙古科技大学信息工程学院内蒙古自治区模式识别与智能图像处理重点实验室, 内蒙古 包头 014010
2 内蒙古工业大学信息工程学院, 内蒙古 呼和浩特 010051
3 上海大学计算机工程与科学学院, 上海 200444
针对分割核磁共振成像(MRI)三维图像中整个肿瘤病灶运算量大、过程繁复的问题,提出了一种基于深度学习的全自动分割算法。在填充锯齿状空洞的卷积通路上构建并行三维卷积神经网络,提取多尺度图像块进行训练,捕获大范围空间信息。利用密集连接的恒等映射特性,将浅层特征叠加到网络末端,在MRI多模态图像中分割出水肿区、增强区、核心区和囊化区。在BraTS 2018数据集中对该模型进行了分割测试,结果表明,该模型分割的全肿瘤区、核心区和增强区的平均Dice系数分别为0.90、0.73和0.71,与已有算法相当,且具有较高的自动化集成度。
三维图像处理 脑肿瘤 空洞卷积 密集连接 BraTS 2018数据集 three-dimensional image processing brain tumor dilated convolution dense connection BraTS 2018 dataset 激光与光电子学进展
2020, 57(14): 141009