作者单位
摘要
西安理工大学材料科学与工程学院,西安 710048
与传统铁电材料相比,具有准同型相界(MPB)的铁电体具有增强的介电、压电和电光性能。通过传统固相烧结技术获得致密的(1-x)Ba2NaNb5O15-xSr2KNb5O15 (BNN-SKN)钨青铜结构陶瓷二元固溶体系,系统研究了BNN-SKN的结构、介电和铁电性能,探究迄今尚未确定的MPB区域。Ccm2与P4bm共存的MPB在x = 0.7附近,随着SKN含量的增加,所测样品的相变温度及介电常数均在x = 0.7附近取得极值,Tm = 170.1 ℃, eTR= 1 211, em = 3 326,给出了BNN-SKN体系的铁电性能,并讨论了该二元体系铁电性变化的影响因素。
钨青铜结构 准同型相界 铁电性 介电性能 tungsten bronze structure morphotropic phase boundary ferroelectric properties dielectric properties 
硅酸盐学报
2023, 51(12): 3046
作者单位
摘要
中国电子科技集团公司第十二研究所微波电真空器件国家级重点实验室, 北京 100015
针对大功率折叠波导行波管 (TWT)对高导热衰减材料的迫切需求, 开展了硼掺杂金刚石膜制备和介电性能研究, 在此基础上研制出硼掺杂金刚石衰减器并探究衰减器性能的热稳定性。研究结果表明, 硼掺杂浓度为 1.81×1019 cm -3的金刚石膜, 在 W波段介电常数和损耗角正切平均值分别为 7.18和 0.30; 随着环境温度从室温升高至 90 ℃, 在 85~110 GHz范围内, 硼掺杂金刚石衰减器的 |S11 |由 19.67 dB提高至 20.94 dB, |S21 |由 44.03 dB提高至 45.63 dB, 呈现出较高的热稳定性。
硼掺杂金刚石膜 介电性能 衰减器 热稳定性 boron-doped diamond film dielectric property attenuator thermal stability 
太赫兹科学与电子信息学报
2023, 21(10): 1189
作者单位
摘要
江苏科技大学 材料科学与工程学院, 江苏 镇江 212000
以分析纯的BaCO3、ZrO2、B2O3为原料, 采用传统固相法制备了添加x%B2O3(质量分数x=0.5~5.0)的BaZrO3微波介质陶瓷。运用扫描电子显微镜、矢量网络分析仪和X线衍射仪等实验手段研究了不同B2O3添加量对BaZrO3陶瓷微观结构、相组成及微波介电性能的影响。结果表明, 随着B2O3添加量的增加, 材料致密烧结温度降低, 介电常数减小, 介电损耗降低。当B2O3添加量超过1%时, 有BaZr(BO3)2相析出。在B2O3添加量为3%,烧结温度为1 300 ℃时, BaZrO3陶瓷获得优异的微波介电性能: 介电常数εr=33.02,品质因数与频率之积Q×f=32 761 GHz, 谐振频率温度系数τf=+152×10-6/℃。
介电性能 微波介质陶瓷 低温烧结 dielectric properties BaZrO3 BaZrO3 microwave dielectric ceramics low temperature sintering 
压电与声光
2023, 45(2): 326
禹在在 1,*李伶 1刘建 1汪洋 2[ ... ]宋涛 1
作者单位
摘要
1 山东工业陶瓷研究设计院,山东 淄博 255000
2 济南大学材料科学与工程学院,济南 250022
3 中材高新材料股份有限公司,北京 100102
5G微带天线、毫米波雷达等应用领域要求所使用的印制电路板(PCB)具有集成化、微型化的特点,这通常要求介质基板材料具有高的介电常数(Dk),低的介电损耗(Df)以及趋近于零的介电常数温度系数(α)。将电介质陶瓷填充到有机聚合物中制备的复合基板兼具良好的加工性和优异的介电性能,是目前最有前途的解决方案。然而,陶瓷填料的物化指标、介电性能以及其与有机树脂的相容性常常是影响有机/无机复合材料综合性能的关键因素。选取具有优异介电性能的二氧化钛(TiO2:Dk约为110,Df约为0.001,α约为-700×10-6 ℃-1)作为研究对象,利用水热法合成了纳米级TiO2前驱体,通过特殊的球化技术制得了高球形度、高结晶度的微米级球形二氧化钛填料。对TiO2填料进行表面改性处理,极大地改善了填料与有机树脂的相容性。此外,通过掺杂Al2O3调控了TiO2填料的α,当填料中Al2O3的质量分数为20%时,所制备复合基板综合介电性能优异:在25 ℃,10 GHz下的Dk=10.2,Df=0.001 9,α= -405×10-6 ℃-1。上述研究结果表明所制备的陶瓷填料能够满足在5G高频高介电PCB板领域的实际应用。
介电性能 二氧化钛填料 复合材料 表面改性 dielectric properties titanium dioxide fillers composites surface modification 
硅酸盐学报
2023, 51(10): 2634
作者单位
摘要
中国船舶集团有限公司第七一五研究所,杭州 310012
随着我国科技水平的飞速发展,激光惯性导航系统的精度要求越来越高。采用工业级原材料,通过固相合成法制备了铌锑-铌镍-锆钛酸铅(PSN-PNN-PZT)四元系大应变压电陶瓷材料,讨论了不同含量Sr对PSN-PNN-PZT压电陶瓷材料介电性能、压电性能的影响。结果表明:当Sr含量为1%(摩尔分数)、n(Zr)/n(Ti)=43/57(摩尔比)时,PSN-PNN-PZT组成位于准同型相界附近,压电陶瓷性能较优,获得了一种相对介电常数εT33/ε0、机电耦合系数kp、压电常数d33、介电损耗tan δ、居里温度Tc分别为4 090、0.664、686 pC/N、0.016 5及213 ℃的大应变压电陶瓷材料;基于该材料配方制备的24 mm×5 mm×0.4 mm压电陶瓷圆环,在100 V的驱动电压下产生的应变量能达到2.500 5 μm,较现有的PZT-14(P14)材料提升32.4%,能应用于高精度激光陀螺稳频器中,提高压电陶瓷微位移驱动器的可靠性。
压电陶瓷 大应变 介电性能 压电性能 居里温度 piezoelectric ceramics PSN-PNN-PZT PSN-PNN-PZT large strain dielectric property piezoelectric property Curie temperature 
硅酸盐通报
2023, 42(7):
作者单位
摘要
1 上海三思电子工程有限公司,上海 201199
2 华东理工大学材料科学与工程学院,上海 200237
作为重要微波介质材料之一,Al2O3陶瓷介电性能优良,在微波电路方面得到广泛应用。但Al2O3陶瓷的烧结温度较高,制备工序需消耗大量能源。低成本降低烧结温度对Al2O3陶瓷的进一步发展具有重要意义。本论文通过MnO2-CuO-TiO2掺杂实现了Al2O3陶瓷的低温烧结,并对其烧结行为和微波介电性能进行了研究。结果表明,MnO2、CuO、TiO2的质量分数分别为0.7%、0.5%、0.8%时,复合掺杂可以大幅降低Al2O3陶瓷的烧结温度,所获陶瓷具有良好的微波介电性能。在烧结温度为1 250 ℃时,Al2O3陶瓷的密度可达3.92 g/cm3,介电常数εr=10.02,品质因子与谐振频率的乘积Q×f值为51 239 GHz。Ti4+、Mn4+、Cu2+固溶导致Al2O3晶格扭曲活化,以及低共熔物形成是促进Al2O3陶瓷低温烧结的原因。
Al2O3陶瓷 低温烧结 微波介电性能 掺杂 Al2O3 ceramics MnO2-CuO-TiO2 MnO2-CuO-TiO2 low temperature sintering microwave dielectric property doping 
硅酸盐通报
2023, 42(10): 3764
作者单位
摘要
1 河海大学力学与材料学院,南京 211100,中国
2 江苏省建筑科学研究院有限公司,高性能土木工程材料国家重点实验室,南京 210008,中国
3 纽约州立大学布法罗分校机械与航空航天工程学院,布法罗 14260-4400,美国
4 东南大学材料科学与工程学院,南京 211189,中国
5 北京理工大学机电学院,北京 100081,中国
介电性能描述了水泥基材料中的极化现象,即正负电荷中心发生分离的现象。目前,国内外学者针对通用硅酸盐水泥基材料的低频介电性能开展了大量研究,涉及水泥基材料的微结构、水泥水化过程、受力状态等,但缺少对最新成果的归纳整理和综合评述。本文通过综述近20年来国内外学者对通用硅酸盐水泥基材料低频介电性能的最新研究成果,对介电常数的测量方法进行介绍,分析了通用硅酸盐水泥基材料中的极化机理,讨论了骨料、水灰比、应力/应变和温度等因素对通用硅酸盐水泥基材料介电性能的影响规律。结果表明:孔隙溶液中的离子是影响通用硅酸盐水泥基材料介电性能的主要原因,通过离子的移动形成的电偶极子以串联的方式连接。骨料和外掺物通过影响微结构影响介电性能。温度升高和压应力会增强介电性能,温度降低和拉应力会减弱介电性能。最后针对今后需要深入开展的相关研究提出建议。
水泥基材料 介电性能 介电常数 极化 电导率 cement-based materials dielectric behavior electrical permittivity polarization electrical conductivity 
硅酸盐学报
2023, 51(8): 2074
作者单位
摘要
与其它储能设备相比, 由介电复合材料制得的介质电容器在快速充放电能力与高功率密度方面极具优势, 如何提高介电复合材料能量密度与优化其击穿性能已成为当前研究热点之一。为进一步调控并兼顾介电常数与击穿性能, 本工作基于DBM(Dielectric Breakdown Model, 介电击穿模型), 采用有限元数值模拟, 研究了无机填料的分布对柔性聚二甲硅氧烷(PDMS)基介电复合材料体系的电场与发生介电击穿时击穿损伤形貌演变的具体影响。研究结果表明: 填料与基体边界处存在较大的介电差异, 可以使用较大介电常数的聚合物基体或较小介电常数的无机填料来减小其界面处的高电场区域, 继而提高复合材料的耐击穿能力;同时发现当无机填料分散更均匀时, 其树状损伤通道更容易产生分支, 此种情况将使介电击穿的树状损伤通道的损伤位点增多, 延缓其损伤速度, 继而提高复合材料的耐击穿性能。该研究结果将为开发高储能密度且具有优异击穿性能的有机-无机复合电介质材料提供坚实的理论依据。
介电性能 复合材料 电场分析 DBM模型 有限元法 dielectric property composite material electric field analysis DBM model finite element analysis 
无机材料学报
2023, 38(2): 155
作者单位
摘要
国网浙江省电力有限公司电力科学研究院,杭州 310000
近年来,高功率、高能量密度的电容器成为新的研究热点,其在脉冲功率系统小型化和轻量化的发展中具有重要意义。本工作以BaTiO3-Bi(Mg0.5Zr0.25Ti0.25)O3固溶体为研究对象,致力于提高BaTiO3基陶瓷材料的储能密度,系统探究了不同含量的Bi(Mg0.5Zr0.25Ti0.25)O3对BaTiO3基陶瓷材料微观结构以及介电、铁电和储能性能的影响。采用标准固相烧结法制备出致密的(1-x)BaTiO3-xBi(Mg0.5Zr0.25Ti0.25)O3 (x=0.03、0.06、0.1、0.3、0.4)陶瓷。通过调整预烧及烧结条件,获得了陶瓷的最佳烧结工艺。随着x的增大,(1-x)BaTiO3-xBi(Mg0.5Zr0.25Ti0.25)O3陶瓷的室温晶体结构由四方相转变为立方相,同时材料从正常铁电体逐渐转变为弛豫型铁电体,介电常数峰值展宽,并在室温至500 ℃的温度范围内基本保持稳定。采用修正的Curie-Weiss定律和Vogel-Fulcher关系对陶瓷介电弛豫行为进行了深入分析。在极化特性方面,Bi(Mg0.5Zr0.25Ti0.25)O3成分的加入能够显著降低剩余极化强度(Pr),增大介电强度,使电滞回线变细长,并使电滞回线中电场对极化的积分面积变大,从而使材料的储能密度得到提高。材料的最大储能密度大致呈先升高后降低的趋势,储能效率从75.08%提高到92.35%,并且在x=0.1时获得了最高的储能密度0.8 J/cm3 (储能效率为88.97%)。
钛酸钡 储能介质陶瓷 弛豫型铁电体 介电性能 储能特性 barium titanate dielectric energy storage relaxor ferroelectrics dielectric properties energy storage properties 
硅酸盐学报
2023, 51(6): 1519
作者单位
摘要
1 遵义师范学院物理与电子科学学院,贵州 遵义 563006
2 遵义师范学院化学化工学院,贵州 遵义 563006
3 吉林化工学院化学与制药工程学院,吉林 吉林 132022
高介电的类钙钛矿陶瓷材料的介电性能优化一直是该领域研究热点。本研究采用高温固相法制备了不同烧结温度的(NaLn)Cu3Ti4O12 (Ln=Ce; Nd)介电陶瓷材料,探讨了介电陶瓷的物相特性、显微结构和介电性能。结果表明:(NaLn)Cu3Ti4O12 (Ln=Ce; Nd)系列陶瓷均为单相陶瓷。随着烧结温度提高,(NaLn)Cu3Ti4O12的介电常数增加,介电损耗变化。不同掺杂离子会使陶瓷内部极化机制发生变化,进而影响陶瓷的介电性能。其中在1 000 ℃制备的(Na1/3Ce2/3)Cu3Ti4O12陶瓷具有最高的介电性能,ε = 50 552(10 Hz);而950 ℃制备的(Na1/2Nd1/2)Cu3Ti4O12陶瓷的介电损耗较小,tanδ=0.09(10 Hz)。
类钙钛矿陶瓷 介电陶瓷 极化机制 介电性能 perovskite-like ceramics dielectric ceramic polarization mechanism giant dielectric properties 
硅酸盐学报
2023, 51(6): 1476

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!