作者单位
摘要
上海理工大学 光电信息与计算机工程学院, 上海 200093
提出了一种基于耦合式光电振荡器的动态腔长长时稳定控制方案,当光谐振腔腔长变化时,通过同相正交(in-phase/quadrature,I/Q)混频器测量光谐振腔内选定两点的谐振相位变化量,反馈控制光电再生腔的光延迟线进行再生腔长跟随补偿,实现可变腔长的耦合式光电振荡器的锁模控制输出,从而将变化的谐振腔腔长转化为变化的谐振频率进行精密测量。经过系统实验,当谐振腔长变化时,振荡器可实时锁定输出可变的微波信号,并保持边模抑制比优于47.26 dB,1 h内功率抖动小于0.28 dB,锁定相位误差抖动在±1.5°以内。
耦合式光电振荡器 再生锁模 腔长控制 I/Q混频 coupled optoelectronic oscillator regenerative mode-locking cavity length control in-phase/quadrature mixing 
光学仪器
2023, 45(1): 38
作者单位
摘要
天津大学电气自动化与信息工程学院光纤通信实验室, 天津 300072
提出了一种再生锁模光纤激光器的双腔稳定控制方案,利用锁相环检测光谐振腔腔长变化引起的微波频率漂移,并用压电陶瓷光纤拉伸器进行反馈补偿。利用光电再生腔中的混频器比较两个同频微波信号的相位,得到光电再生腔的腔长变化,并用电移相器反馈补偿光电再生腔的腔长变化。本研究中再生锁模激光器输出了重复频率为10 GHz、脉冲宽度为16.6 ps的光脉冲。光电再生腔输出了重复频率为10 GHz的微波信号,其边模抑制比为40 dB,相位噪声为-127 dBc/Hz,70 min内的频率漂移小于1 Hz。与现有的再生锁模方案相比,本方案实现了光谐振腔腔长和光电再生腔腔长的同时控制,输出的微波信号频率稳定度高,光脉冲质量好,可实现激光器的长时间稳定工作。
激光器 再生锁模 腔长控制 压电陶瓷 频率稳定性 
激光与光电子学进展
2018, 55(5): 051402
作者单位
摘要
天津大学精密仪器与光电子工程学院,光电信息技术科学教育部重点实验室,天津,300072
对谐波锁模掺铒光纤激光器的稳定性进行了实验研究.采用再生锁模技术控制腔长变化对稳定性的影响,提出了在腔内利用缠绕光纤法替代保偏光纤以获取偏振稳定机制的方案,并进行了相关实验.利用自相位调制十频谱滤波抑制超模噪音,实验中当抽运功率在50 mW以上时就足可以抑制超模噪音.实验结果表明:采用以上三种措施能够较好地解决影响谐波锁模光纤激光器稳定的温漂、偏振起伏和超模噪音问题,从而大大提高了谐波锁模光纤激光器的稳定性.
谐波锁模光纤激光器 再生锁模技术 超模噪音 稳定性 
光子学报
2007, 36(3): 391
作者单位
摘要
天津大学精密仪器与光电子工程学院, 光电信息技术科学教育部重点实验室, 天津 300072
将再生锁模光纤激光器(RMLFL)输出的约5.8 ps脉宽的高质量无啁啾双曲正割脉冲,通过掺铒光纤放大器(EDFA)放大后注入4.28 km长的色散平坦光纤(DFF)中,利用二阶孤子压缩效应成功地将脉冲压缩到1.74 ps,压缩比为3.3,与理论计算结果完全一致。与基于色散渐减光纤(DDF)的绝热孤子压缩(ASC)方案相比,该方案在同样的孤子阶数下大大降低了入射功率,而且色散平坦光纤的非色散渐减特性决定了它对于不同波长、不同脉宽的输入都可以通过调整输入脉冲功率和选取合适的光纤长度来配合满足压缩条件。虽然压缩因子不大,但基本能满足需求。
导波与光纤光学 高阶孤子 色散平坦光纤 再生锁模光纤激光器 
中国激光
2006, 33(6): 756
作者单位
摘要
天津大学精密仪器与光电子工程学院光电信息技术科学教育部重点实验室, 天津 300072
高重复频率超短光脉冲产生技术是高速光时分复用(OTDM)系统的关键技术之一,而一般的超短脉冲源直接产生的脉冲往往不够窄,因此必须对光脉冲进行压缩后才能满足高速光通信系统的要求。采用360 m长的色散渐减光纤(DDF),成功将从再生锁模光纤激光器(RMLFL)输出的中心波长1546 nm、 重复频率10 GHz、脉宽分别为5.40 ps和4.60 ps的光脉冲,绝热压缩为脉宽为1.93 ps和1.71 ps的小基座孤子脉冲,压缩因子分别为2.80和2.69。利用这种绝热孤子压缩方法得到的光脉冲质量较好,可以用于160 Gb/s的光时分复用系统。
导波与光纤光学 孤子脉冲 绝热孤子压缩 色散渐减光纤 再生锁模光纤激光器 
光学学报
2006, 26(2): 166

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!