作者单位
摘要
1 中电科芯片技术(集团)有限公司,重庆 400060
2 中国电子科技集团公司 第二十六研究所,重庆 400060
3 重庆城市管理职业学院 大数据与信息产业学院,重庆 400030
针对微机电系统(MEMS)压阻式压力传感器受环境温度影响产生温度漂移的问题,该文分析了常用的温度补偿方法,提出了一种基于粒子群优化-径向基函数(PSO-RBF)的压力传感器温度补偿模型,结合标定实验采集的样本数据,建立了标定压力同敏感元件输出电压和温度的非线性映射关系,实现了温度补偿效果。结果表明,与传统的最小二乘法、三次样条插值法、标准RBF、粒子群优化反向传输神经网络(PSO-BP)、核极限学习机(ELM)神经网络等方法相比,该算法具有更好的补偿预测效果,且对样本数据不需要归一化处理,具有良好的工程实践意义。
微机电系统(MEMS) 压阻式压力传感器 温度补偿 归一化 micro-electro-mechanical system(MEMS) piezoresistive pressure sensor PSO-RBF PSO-RBF temperature compensation normalization 
压电与声光
2023, 45(6): 828
作者单位
摘要
1 国网浙江省电力有限公司 宁波供电公司, 浙江 宁波 315012
2 宁波送变电建设有限公司, 浙江 宁波 315000
3 宁波送变电建设有限公司 运维分公司, 浙江 宁波 315032
4 南京元感微电子有限公司, 南京 211100
为了改善微弱压力传感器的灵敏度, 利用微结构来产生压阻效应的方法, 制备出一种性能优异的压力传感器。研究了三种不同结构的石墨烯压力传感器, 并设计和研究了石墨烯压力传感器的版图结构、工艺制备流程和材料表征。最后, 对三种不同结构的石墨烯压力传感器进行了灵敏度测试。实验结果表明, 网状结构的石墨烯压力传感器具有较高的灵敏度, 在低压强下(0~200 Pa)的灵敏度可达到0303 kPa-1, 最低可检测到245 Pa的压强。该网状结构的石墨烯压力传感器是一种可以感知微弱压力变化的高性能压力传感器。
石墨烯 压力传感器 网状结构 灵敏度 graphene, pressure sensor, mesh structure, sensiti 
微电子学
2023, 53(4): 735
作者单位
摘要
南京邮电大学 集成电路科学与工程学院, 南京 210023
为了保证在低成本、易制备的前提下提高激光诱导石墨烯压力传感器的性能,设计了一种石墨烯压力传感器的放大结构。表征了激光诱导石墨烯压力传感器的表面结构,分析了表面多孔泡沫结构对压阻效应的影响,采用COMSOL软件对传感器放大结构的受力情况进行仿真分析,得到在外界压力下石墨烯层的受力情况。选用3D打印方法制备树脂材料放大结构基底,在低成本的同时兼顾了轻质、高精度、高机械强度等性能。测试结果表明,压强在5~20 kPa范围内时,该放大结构的灵敏度较无放大结构提高了约43%。
激光诱导石墨烯 石墨烯 压阻效应 放大结构 压力传感器 laser induced graphene(LIG) graphene piezoresistive effect amplification structure pressure sensor 
微电子学
2023, 53(2): 310
作者单位
摘要
1 南京邮电大学 集成电路科学与工程学院, 南京 210023
2 南京邮电大学 射频集成与微组装技术国家地方联合工程实验室, 南京 210023
应用日益广泛的可穿戴设备要求其中的传感器件可拉伸、可弯曲,因此柔性传感器已受到人们的重视。文章对柔性压力传感器的微结构、材料、制备工艺等方面进行了综述,重点总结了现阶段柔性传感器所采用的各种结构,比较了天然微结构、仿生表面微结构、多孔结构、多级结构、多层结构柔性压力传感器的重要性能。介绍了目前常用的柔性基底材料和导电活性材料,对比了光刻技术、3D打印等制造工艺的优缺点,对柔性压力传感器的未来研究方向进行了展望。文章对相关柔性器件的研究具有较高的理论价值和工程参考意义。
柔性压力传感器 微结构 柔性基底材料 3D打印 flexible pressure sensor microstructure flexible substrate material 3D printing 
微电子学
2023, 53(2): 295
作者单位
摘要
中北大学 仪器与电子学院 省部共建动态测试技术国家重点实验室, 山西 太原 030051
结构健康监测、医疗诊断分析、气压检测以及**工程应用等领域对压力的高灵敏度探测要求越来越高。光纤传感器由于其体积小、灵敏度高及抗电磁干扰等优点被广泛应用于压力测量。针对石英材料的杨氏模量较高,传统实芯光纤压力传感器的受压变形量较小,导致测量灵敏度很难提高。文章提出了一种基于游标效应的双Sagnac干涉环式光纤压力传感器。传感器由保偏光子晶体光纤(Polarization Maintaining Fiber, PM-PCF)作为敏感单元实现Sagnac干涉并通过不同PCF长度实现针对压力增敏特性的游标效应。传感器分别采用在单模光纤中嵌入PM-PCF形成传感器的参考单元和压力敏感单元,并对Sagnac环的感压部分进行封装,通过实验对并联型Sagnac环压力传感器的压力特性进行研究。实验结果表明在压力范围为0~2.4MPa内,压力传感器最大灵敏度为-54.491nm/MPa,分辨率为0.367kPa。相比无游标效应的Sagnac环压力传感器,其压力灵敏度放大了16.7倍。此外,传感器具有制造简单、结构坚固、运行稳定的优点,为高灵敏度压力传感器提供了一种替代设计方案。
保偏光子晶体光纤 萨格纳克干涉 游标效应 光纤压力传感器 polarization-maintaining photonic crystal fiber sagnac interference vernier effect fiber optic pressure sensor 
光学技术
2023, 49(3): 305
作者单位
摘要
1 长春工业大学 化学工程学院,吉林 长春 130012
2 梧州学院 广西机器视觉与智能控制重点实验室,广西 梧州 543002
本文介绍了石墨烯材料的制备、石墨烯压力传感器的性能以及在可穿戴电子器件中的应用前景。总结了石墨烯材料的制备方法,阐述了石墨烯压力传感器在机械、导电性能、显示方面的优势。研究了在压力传感器的结构中加入石墨烯、石墨烯衍生物或石墨烯复合材料提高传感器性能的策略。介绍了石墨烯压力传感器在可穿戴电子器件中的应用,包括人体行为和健康检测、人机界面、电子皮肤以及可穿戴显示器方面的优秀性能和前景。
石墨烯 压力传感器 性能 应用 可穿戴电子器件 graphene pressure sensor performance applications wearable electronics 
液晶与显示
2023, 38(8): 1062
作者单位
摘要
山东大学信息科学与工程学院,山东 青岛 266237
提出了一种基于非对称马赫-曾德尔干涉(AMZI)和3D打印立体光刻树脂模块的大量程压力传感器,分析了传感器的特性,推导的公式表明传感器的灵敏度与单臂长度成正比,与衍射阶数成反比。在设计中,高灵敏度通过小的衍射级实现,AMZI压力传感器采用平面光波技术制造,压力块采用树脂(DM11)3D打印,测试灵敏度为0.3047 nm/MPa。
马赫-曾德尔干涉 压力传感器 大范围 高灵敏度 集成光学 
激光与光电子学进展
2023, 60(19): 1923001
江毅 1,2,*张雨彤 1,2,3邓辉 1,2
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 信息光子技术工业和信息化部重点实验室,北京 100081
3 包头师范学院物理科学与技术学院,内蒙古 包头 014030
提出了一种高温大量程的蓝宝石法布里-珀罗(F-P)干涉仪压力传感器。传感器由三层蓝宝石晶片直接键合而成,包括蓝宝石衬底、带通孔的蓝宝石晶片和感压蓝宝石晶片。飞秒激光用于在蓝宝石晶片的中心刻蚀通孔,并粗糙化感压蓝宝石晶片的外表面。利用蓝宝石晶片抛光面作为F-P腔的反射面,有助于降低解调出的光学腔长波动,提高压力分辨率。提出的传感器在室温、0~30 MPa的高压力范围内光学腔长随压力线性变化,压力灵敏度为0.1253 μm/MPa,相对分辨率达到0.04% FS(full scale,全量程),且能在700 ℃下稳定工作。
光纤光学 光纤压力传感器 非本征法布里-珀罗干涉仪 蓝宝石晶片 飞秒激光微加工 大压力量程 
光学学报
2023, 43(15): 1506001
作者单位
摘要
1 机械工业仪器仪表综合技术经济研究所,北京00055
2 南昌航空大学,江西南昌330063
设计了利用激光焊接技术进行波纹膜片焊接的工艺方案,提出了基于正交试验的关键焊接工艺参数优化方法,设计关键焊接工艺正交试验表,完成以焊缝残余应力为评价指标的正交试验。基于正交试验获得的较优焊接工艺参数组合,焊接压力传感器,完成了焊接密封性、拉伸强度和传感器静态性能指标的测试验证。结果表明,较优的压力传感器波纹膜片激光焊接工艺参数组合是激光功率350 W、脉冲频率150 Hz、脉冲宽度1.5 ms、转台转速4 200 (°)/min;压力传感器焊缝的拉伸强度高达499.60 MPa,具备较好的密封性;焊接波纹膜片后的传感器零点输出提高了17%左右,灵敏度、满量程输出、非线性、迟滞和重复性等指标变化不大,但是非线性、迟滞和重复性比同厂家的同类型传感器改善约1倍左右。正交试验确定的激光焊接工艺能够保障压力传感器的高质量封装应用。
压力传感器 波纹膜片 激光焊接 残余应力 正交试验 静态性能 pressure sensor corrugated diaphragm laser welding residual stress orthogonal test static performance 
光学 精密工程
2023, 31(11): 1652
作者单位
摘要
1 厦门大学机电工程系,福建 厦门 361005
2 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Overview: Microstructure sensor is a kind of sensor with a 2D or 3D micron-scale structure prepared by advanced manufacturing technology. It is used as a sensitive part to enhance the transmission characteristics of physical, chemical, and biological signals to the environment, and convert the external signals into electrical signals. The microstructure is generally a regular or disordered structure, usually in the shape of microspheres, microcolumns, microcones, microgrooves and micropores. The microstructures with different shapes can realize the functions of puncture, pressure transmission, vibration transmission, drug transmission, bioelectric transmission, heat transmission, sound transmission, gas adsorption, and so on. In recent years, researchers from all over the world have gradually attached great importance to the research on the manufacturing technology of microstructure sensors. At present, researchers have proposed the MEMS manufacturing processes, such as reactive ion etching and chemical vapor deposition, to achieve mass manufacturing of high-precision microstructures on flexible polymer materials and rigid materials. In addition, some researchers have also proposed the manufacturing processes such as template method, self-assembly, nanoimprinting, and soft lithography to realize microstructure manufacturing. However, the above-mentioned manufacturing processes usually cannot prepare microstructure in one step, which has the problems of complex process, high production cost, limited processing materials, and unable to control the microstructure morphology. In contrast, laser manufacturing technology has the advantages of non-contact processing, no mask, customizable manufacturing, etc. By optimizing the parameters of laser process (such as laser power, scanning speed, filling mode and scanning path), it can achieve efficient and low-cost manufacturing of microstructures with different sizes and shapes. Therefore, using laser manufacturing technology to realize microstructure manufacturing and applying it to bioelectricity, temperature, and pressure sensors has become a research hotspot in microstructure sensor manufacturing technology. Laser manufacturing technology mainly includes laser ablation, laser direct writing, laser induction, laser-template processing, etc. Laser ablation is an auxiliary heating process based on the thermochemical and thermophysical effects of a laser beam, which melts the materials to be processed to realize structural forming. Laser direct writing is a manufacturing process that focuses high-energy photon beams on the materials to be processed to produce a photochemical process, and manufacturing the structures through material removal. Laser-induced modification is a manufacturing process to change the physical and chemical properties of the materials to be processed. Laser-template processing is a manufacturing process that uses a laser to produce microstructure molds on silicon, glass, polymer, and other substrates, and then uses soft lithography technology to reverse die the structures on the molds. Based on the interaction between the laser and materials, the induction, removal, and migration of materials to be processed can be realized. By adjusting the laser processing mode and processing parameters, the controlled manufacturing of the 2D or 3D microstructures or the controlled preparation of functional materials for the sensitive units can be realized, breaking through the limitations of efficiency and cost of traditional manufacturing methods for microstructures. In this paper, the types, functions, and manufacturing technologies of microstructures are summarized and classified. The preparation processes of laser manufacturing technology and other advanced manufacturing technologies of microstructures are summarized. The applications of microstructure sensors prepared by laser ablation, laser direct writing, laser induction, and laser-template processing technology in bioelectric sensing, temperature sensing, and pressure sensing are described in detail. Finally, the development trend of the laser manufacturing technology for microstructure sensors is summarized and prospected.
激光制造 微结构 生物电传感器 温度传感器 压力传感器 laser manufacturing microstructure bioelectric sensors temperature sensors pressure sensors 
光电工程
2023, 50(3): 220041

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!