作者单位
摘要
江苏大学物理与电子工程学院,江苏镇江 212000
太赫兹技术被称为“改变未来世界十大技术之一”,对基础科学研究、国民经济发展和**建设具有重要意义,尤其在未来 6G通信方面举足轻重。太赫兹波源是整个太赫兹技术研究的基础,也是太赫兹应用系统的核心部件。近年来,共振隧穿二极管 (RTD)型太赫兹波源因体积小,质量轻,易于集成,室温工作,功耗低等特点受到广泛关注,为太赫兹波推广应用开辟了新的途径。通过文献分析,本文从器件材料技术、主要工艺及器件性能等方面对 InP基与 GaN基 RTD太赫兹振荡器的发展进行评述,并探讨了 InP基与 GaN基 RTD太赫兹振荡器件的研究方向。
共振隧穿二级管 太赫兹波源 磷化铟 氮化镓 Resonant Tunneling Diode terahertz source indium phosphide gallium nitride 
太赫兹科学与电子信息学报
2023, 21(5): 579
作者单位
摘要
首都师范大学物理系太赫兹光电子学教育部重点实验室, 北京 100048
最新的实验研究表明通过激光激发液体诱导等离子体可产生宽带太赫兹波, 且液体作为太赫兹波辐射源具有独特的性质。液体具有与固体相当的物质密度, 激光在一定区域内与分子的相互作用比气体多三个数量级; 而与固体相比, 液体的流动性使得每一个激光脉冲可与目标物液体靶的新区域相互作用。这些特性使得液体在高能量密度等离子体的研究中具有广阔的前景, 甚至有可能成为下一代太赫兹波辐射源。本文全面综述了液体的流体状态和种类、激光入射位置和角度、脉冲持续时间以及脉冲能量等因素对产生太赫兹波的影响。
非线性光学 太赫兹波源 液体 等离子体 光致电离 nonlinear optics terahertz source liquid plasma laser-induce ionization 
量子电子学报
2023, 40(2): 164
作者单位
摘要
安徽大学 电子信息工程学院, 安徽 合肥 230601
基于拉普拉斯变换的电流密度卷积技术(LTJEC), 构造了时变磁化等离子体的新型时域有限差分方法(LTJEC-FDTD)。借助于高斯脉冲在磁化等离子体中的传播实例, 验证了LTJEC-FDTD算法的准确性及高效性。进一步, 研究了Whistler波在一维时变磁化等离子体中的具体传播特性。结果表明, 当离子体频率随时间指数衰减后, 输出波的频率上升、极化方式不变, 而电场增强、磁场减弱。同时, 通过优化磁化等离子体参数, 可进一步提高Whistler波的输出频率, 获得了频率为300 GHz的圆极化太赫兹波。研究结果可为利用磁化等离子体产生太赫兹波源提供相关的技术支持。
时变磁化等离子体 太赫兹波源 time-varying magnetic plasma terahertz source LTJEC LTJEC FDTD FDTD 
发光学报
2018, 39(7): 1029

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!