作者单位
摘要
1 中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
2 湖北省珠宝工程技术研究中心, 湖北 武汉 430074
近年来因为高品质银灰色Akoya珍珠备受青睐, 大量改色处理的银灰色珍珠涌入市场, 造成混乱, 其中辐照处理改色的珍珠很难鉴别, 成为检测难题。 对一批白色和浅黄色Akoya珍珠进行了不同剂量的γ射线辐照改色实验, 并对辐照前后的样品和天然呈银灰色的Akoya珍珠进行放大观察及光致发光光谱、 紫外可见光光谱和三维荧光光谱等无损谱学测试。 实验结果表明: 浅黄色Akoya辐照的改色效果明显好于白色者, 随辐照剂量的加大, 改变的颜色加深。 通过对比辐照改色前后的样品与天然呈银灰色Akoya珍珠样品的镜下特征, 发现: 辐照改色者具有浅色珠层和带有深褐色条纹的褐色珠核, 天然呈色者则在浅色珠层和白色珠核间有一褐色有机质夹层, 有机质不均匀的地方在珍珠表面形成“黑斑”。 对比辐照前后样品与天然呈银灰色Akoya珍珠样品的谱学特征发现: 辐照改色者较改色前及天然呈色者的光致发光光谱的荧光背景更高, 但背景峰与文石主峰强度比值F/A值(1.34~1.98)比天然呈色者(0.52~1.12)略高; 辐照改色者较改色前紫外可见光谱反射率明显降低, 在紫外光区的360 nm处出现宽缓吸收, 而天然呈色者在430~530 nm范围内有宽缓吸收, 且随伴色不同位置发生改变, 有时在750~800 nm也可以有弱的宽缓吸收; 辐照改色者三维荧光光谱与改色前样品的发光中心一致, 只是荧光强度较改色前降低了一半, 但改色者与天然呈色者的主要发光中心完全不同, 辐照改色者三维荧光光谱显示两个最高强度的发光中心于Ex/Em为374/449和463 nm处, 而天然呈色者的最强发光中心在Ex/Em为280/340 nm处。 研究结果表明, 珍珠孔眼及表面特征和三维荧光光谱的测试结果, 可以很好地鉴别天然呈色和γ射线辐照改色的银灰色Akoya珍珠, 光致发光光谱和紫外可见光光谱可以作为辅助鉴定依据。
银灰色Akoya珍珠 γ射线辐照 三维荧光光谱 鉴别特征 Gray Akoya pearls γ-ray irradiation treatment 3D fluorescence spectrum Identify characteristics 
光谱学与光谱分析
2023, 43(4): 1056
作者单位
摘要
中国地质大学(武汉)珠宝学院, 湖北 武汉 430074
“黑青”指颜色近黑色, 主要成分为透闪石的青玉。 “黑碧”指颜色近黑色, 主要成分为阳起石的碧玉。 采用电子探针、 激光剥蚀电感耦合等离子体质谱仪和红外光谱测试分析手段, 确定“黑青”“黑碧”的矿物种属。 采用拉曼光谱、 显微紫外-可见分光光度计、 红外光谱对“黑青”“黑碧”的谱学鉴别特征进行探究。 “黑青”为标准透闪石拉曼谱峰, “黑碧”的谱峰位置与“黑青”存在几个波数的偏差, 向波数小的方向移动。 可见-近红外波段, “黑青”出现445 nm吸收峰, 680和940 nm宽吸收带, 为Fe2+和Fe3+作用; “黑碧”出现445 nm吸收峰, 660和690 nm双吸收峰以及970 nm吸收峰, 为Fe2+, Fe3+, Cr3+作用。 显微紫外-可见光谱可分析到样品的近红外区, “黑青”在1 397, 2 310, 2 387和2 466 nm出现强吸收峰, 1 915和2 120 nm出现弱吸收峰; “黑碧”在1 400, 2 313和2 394 nm出现吸收峰。 红外光谱分析“黑青”在5 225, 4 738, 4 692, 5 349, 4 317, 4 190和4 064 cm-1存在吸收峰; “黑碧”在4 708, 4 307, 4 178和4 031 cm-1存在吸收峰。 显微紫外-可见光谱与红外光谱分析结果虽然存在小的差异, 但基本保持一致, 以红外光谱分析结果为准。 将透闪石质的“黑青”、 阳起石质的“黑碧”、 广西大化阳起石质玉进行对比, 综合红外光谱和显微紫外-可见光谱分析结果得出“黑青”(透闪石)与“黑碧”(阳起石)近红外光谱的鉴别特征: “黑青”(透闪石)在4 800~4 600 cm-1存在两个吸收峰, 4 350~4 300 cm-1存在分裂双吸收峰; “黑碧”(阳起石)在4 800~4 600 cm-1存在一个弱吸收峰, 4 350~4 300 cm-1存在一个吸收单峰。 且“黑碧”(阳起石)的近红外吸收峰相较于“黑青”(透闪石)整体向低波数方向移动。
“黑青” “黑碧” 透闪石 阳起石 近红外光谱 鉴别特征 “Heiqing” “Heibi” Tremolite Actinolite Near-infrared spectroscopy Identification characteristics 
光谱学与光谱分析
2021, 41(1): 292
作者单位
摘要
1 重庆大学 光电技术与系统教育部重点实验室, 重庆 400044
2 酒泉卫星发射中心, 甘肃 酒泉 735300
考虑高光谱遥感数据集多类别非线性的特点, 本文假设高光谱遥感数据集具有丛流形结构属性, 提出了一种半监督丛流形学习(SSBML)算法来有效提取高光谱遥感图像的鉴别特征。该算法利用标记样本和无标记样本构建两个近邻关系图来保持数据集中丛流形的“整体”结构(各个子流形之间的相互关系)和每个子流形的内蕴结构特征, 实现半监督的丛流形学习。在肯尼迪航天中心(KSC)和帕维亚大学(PaviaU)高光谱数据集上的实验结果表明: 该算法可以发现高光谱遥感数据集中丛流形结构的精细特征, 有效提升高光谱遥感图像的分类精度。实验显示: 该算法的总体分类精度比单一流形假设的局部保形投影(LPP)和邻域保持嵌入(NPE)算法提升了约2.9%~15.7%, 比半监督最大边界准则(SSMMC)和半监督流形保持嵌入 (SSSMPE)等半监督算法提升了约2.6%~12.4%。
高光谱遥感图像 鉴别特征 丛流形结构 半监督丛流形学习 hyperspectral remote sensing image discriminant characteristics bundle manifold structure Semi-supervised Bundle Manifold Learning(SSBML) 
光学 精密工程
2015, 23(5): 1434

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!