符婧 1王绪彤 1刘胜帅 1,5,**荆杰泰 1,2,3,4,*
作者单位
摘要
1 华东师范大学物理与电子科学学院精密光谱科学与技术国家重点实验室,上海 200062
2 中国科学院超强激光科学卓越创新中心,上海 201800
3 山西大学极端光学协同创新中心,山西 太原 030006
4 南京大学固体微结构国家实验室,江苏 南京 210093
5 华东师范大学重庆研究所重庆精密光学重点实验室,重庆 401120
高精度的干涉仪在精密测量领域有着非常重要的作用。相位估计的不确定度通常用来判定一个干涉仪测量的精密程度,相位估计的不确定度越小意味着相位灵敏度越高。在理论上提出了由光学参量放大器和线性光学分束器(BS)组成的非线性干涉仪。基于热85Rb原子系综四波混频(FWM)过程的光学参量放大器用来实现干涉仪中光束的合成与分离。BS作为反馈控制器,通过控制器件的反射率,来控制FWM过程的出射光返回到入射光端口的比例。与传统干涉仪的相位灵敏度相比,通过理论计算证明了基于光学参量放大器反馈的非线性干涉仪相位灵敏度更高。本研究结果在量子精密测量领域有着潜在的研究价值。
量子精密测量 非线性干涉仪 光学参量放大器 四波混频 反馈控制 
激光与光电子学进展
2023, 60(11): 1106021
作者单位
摘要
天津大学,电信学院光纤通信实验室,光电信息技术科学教育部重点实验室,天津,300072
基于超快非线性干涉仪UNI开关具有超过40 Gbit/s的开关速度,提出一种在锁模环形腔内利用UNI开关进行时钟提取的新方案.按此方案进行实验,对40 Gbit/s伪随机信号进行时钟提取,得到了清晰稳定的时钟脉冲.与利用SOA的交叉增益调制注入锁模时钟提取方案相比,在此方案中注入到SOA的信号功率仅0.5 dBm,降低了7 dB左右,对SOA的运行更安全.
光纤通信技术 40 GHz时钟提取 全光3R 超快非线性干涉仪 半导体光放大器 交叉相位调制 
光子学报
2007, 36(7): 1294
作者单位
摘要
1 天津大学,精密仪器与光电子工程学院,光电信息技术科学教育部重点实验室,天津,300072
2 天津大学,电信学院,光纤通信实验室,天津,300072
超快非线性干涉仪(UNI) 是一种基于半导体光放大器(SOA) 的超高速全光开关器件.UNI的开关窗口特性的好坏是评价UNI性能的一个重要指标.文章对单臂结构的UNI的工作原理进行了描述,并用Optisystem 3.0对UNI开关窗口特性进行了仿真模拟,详细分析了延时(、SOA的偏置电流、控制光功率以及连续光功率等因素对UNI开关窗口的影响,从而为实现最佳的开关窗口提供了一个理论指导.
超快非线性干涉仪 开关窗口 半导体光放大器 全光开关 
光电工程
2006, 33(5): 126
作者单位
摘要
天津大学电信学院光纤通信实验室 光电信息技术科学教育部重点实验室(天津大学),天津 300072
全光非线性开关是全光3R再生的关键技术。在对一种全光开关[超快非线性干涉仪(UNI)]的传输函数进行分析后,得到了超快非线性干涉仪窗口的数学描述。在此基础上通过实验得到了40 Gb/s的全光开关。并结合实验条件,具体分析了影响超快非线性干涉仪开关窗口的几个因素: 增加半导体光放大器(SOA)的注入电流,增大控制脉冲的平均功率和调节连续光功率到最佳值,都能有效地改善输出窗口的形状和消光比,并对这种现象在理论上进行了初步分析。可以利用上述结论指导超快非线性干涉仪实验,从而使超快非线性干涉仪系统得到最大程度的优化。
光电子学 全光开关 超快非线性干涉仪 半导体光放大器 开关窗口 
中国激光
2005, 32(7): 987
作者单位
摘要
1 天津大学电信学院光纤通信实验室, 天津 300072
2 天津大学光电信息技术科学教育部重点实验室,天津 300072
就超快非线性干涉仪(UNI)的输入光特性对其开关窗口的影响进行了数值模拟和实验研究,输入光包括控制光脉冲和探测光脉冲。在数值模拟中,调节控制光脉冲和探测光脉冲的功率及脉宽,功率越高和脉宽越窄,窗口的形状越好。在调节过程中发现控制光脉冲和探测光脉冲都存在一个最佳的功率点使窗口的形状达到最优。如果继续增大控制光脉冲功率,会使窗口的顶部倾斜,窗口形状恶化;而继续增大探测光脉冲功率,窗口的消光比开始下降。在数值模拟的基础上进行了10 Gb/s的超快非线性干涉仪全光开关实验,在实验中用连续光代替探测光脉冲以观察窗口形状。通过改变控制光脉冲和连续光功率来验证它们对超快非线性干涉仪开关窗口的影响。实验表明,应选用短而强的控制光脉冲和最优功率点的连续光,这与模拟结果吻合。
光纤通信技术 超快非线性干涉仪 半导体光放大器 交叉相位调制 开关窗口 
光学学报
2005, 25(3): 302

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!