作者单位
摘要
1 广东工贸职业技术学院机电工程学院, 广东 广州 510550
2 广东工业大学, 广东 广州 510006
针对芯片实验室对浓度梯度产生器(CGG)的需求, 为制作侧壁垂直的CGG, 提出了一种移动焦平面正反面曝光制备SU-8光刻胶微结构的方法。该方法根据焦深将SU-8厚度分成多层, 每曝光一次焦面向下移动一层, 当曝光层数达到总层数一半时将样品翻转, 同样采用移动焦面重复曝光的方式使SU-8内部形成光化学反应通道, 得到充分曝光。最终利用SU-8微结构制作出聚二甲基硅氧烷 (PDMS) CGG。测试结果表明:SU-8微结构实际轮廓侧壁垂直, 没有出现 “T” 形结构, 沟道高度为49.4 μm;PDMS CGG侧壁垂直, 沟道深度为49.3 μm, 满足CGG侧壁垂直要求。
光电子学 浓度梯度产生器 焦面移动正反面曝光 SU-8 聚二甲基硅氧烷 optoelectronics concentration gradient generator focal-plane moving front and back exposure SU-8 polydimethylsiloxane 
量子电子学报
2023, 40(3): 415
作者单位
摘要
1 之江实验室智能芯片与器件研究中心,浙江 杭州 311121
2 浙江大学光电科学与工程学院极端光学技术与仪器全国重点实验室,浙江 杭州 310027
3 上海电力大学电子与信息工程学院,上海 200090
4 浙江大学杭州国际科创中心, 浙江 杭州 311200
Overview: Two-photon lithography (TPL) has been a research hotspot in 3D micro/nano writing technology due to its characteristics of high resolution, low thermal influence, a wide range of processed materials, low environmental requirements, and 3D processing capability. It has shown unique advantages in the fields of life science, material engineering, micro/nano optics, microfluidic, micro machinery, and so on. This paper summarizes the research works done by researchers on different writing methods to improve TPL processing efficiency. Single-beam writing is the main method for TPL, which mainly depends on the speed of the scanning device. Single-beam writing has the advantages of simple system and high-quality beam, and it is easy to combine various effects to improve writing results. It mainly includes scanning modes based on the translation stage, galvo, polygon laser scanner, and acousto-optic deflector (AOD) (Fig. 2). All these modes have advantages and disadvantages. As for the scanning speed comparison, polygon laser scanner and AOD have relatively faster writing rates (faster than m/s). Multi-foci parallel lithography can obviously promote efficiency, elevating the speed by dozens or even hundreds of thousands of times, mainly based on spatial light modulator (SLM), digital micromirror device (DMD), microlens array (MLA), diffractive optical elements (DOE), multi-beam interference, and so on (Figs. 3-15). Multi-foci parallel lithography based on SLM is most widely used owing to its high efficiency and ability to flexible and independent control of each single beam, but the refresh rate is still insufficient. DMD has a higher refreshing rate (32 kHz), but the state-of-the-art beam parallelism realized by DMD is severely limited. More parallel beams are further required for improving the processing efficiency. The 2D pattern exposure method based on SLM or DMD can further improve the TPL efficiency with the superiority of generating flexibly designed pattern (Figs. 16-18). However, the 2D projection exposure technology is still difficult to achieve high writing precision, especially the axial resolution. An available method to improve the axial precision is spatially and temporally focusing an ultrafast laser to implement a strong intensity gradient at the spatial focal plane that restricts polymerization within a thin layer. The 3D projection method will be the most efficient writing method in the future, especially in 3D device processing (Figs. 19-20). Researchers used this technique to make hollow tubular and conical helices structures, increasing the processing speed by 600 times. However, the research results show that the current 3D projection can only process simple 3D structures. Further researches on 3D exposure processing of complex structures are expected, which will effectively expand its application in various fields. Authors believe that with the effort of researchers on efficiency improvement gradually, TPL can further highlight its advantages to promote the development of life science, materials engineering, micro-nano optics, and many other fields.
飞秒激光直写 双光子光刻 单光束扫描 多焦点并行 面曝光 体曝光 femtosecond laser direct writing two-photon lithography single-beam scanning multi-focus parallelism pattern projection 3D projection exposure 
光电工程
2023, 50(3): 220133
作者单位
摘要
1 中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
主要研究面曝光选区激光熔化单层成形时,激光光斑搭接率和电流对形状精度的影响。实验通过控制变量法研究搭接率、曝光时间、电流等工艺参数对激光光斑、熔道、圆环、尖角等成形形状精度的影响。实验结果表明:一定范围内,电流越大,激光光斑更均匀,成形一致性更好;搭接率38.4%能够获得最低的形状误差的熔道;搭接率一定,圆环成形误差随电流的增加而增加;尖角成形误差随着电流增加,呈现先增后减的趋势;搭接率为46.1%、38.4%时,零级衍射带来的形状误差降低。
增材制造 选区激光熔化 面曝光 形状精度 工艺参数 光斑搭接 additive manufacturing selective laser melting surface exposure shape accuracy process parameter laser spot overlap 
强激光与粒子束
2021, 33(5): 059001
作者单位
摘要
1 中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
与点扫描方式相比,面曝光选区激光熔化因具有成形效率高、残余应力水平低等优势,而成为极具发展前景的新一代选区激光熔化增材制造技术的发展方向。利用波长为915 nm的二极管连续激光器作为光源,结合电寻址反射式纯相位液晶空间光调制器,搭建了新一代面曝光选区激光熔化增材制造原理装置平台。获得了“○”形样式的面光斑曝光,基于光敏纸和低熔点金属粉末材料进行面曝光熔化成形并获得了样品,实现了面曝光选区激光熔化的原理性实验验证。
增材制造 面曝光 选区激光熔化 空间光调制器 低熔点金属 additive manufacturing surface exposure selective laser melting spatial light modulator low melting point metal 
强激光与粒子束
2021, 33(2): 029001
作者单位
摘要
西安工程大学机电工程学院, 陕西 西安 710048
面曝光快速成形工艺中,视图平面上的光照度大小严重影响着零件的制作精度,为控制面曝光快速成形工艺中的制作精度,需要准确测量视图平面上的光照度,为此开发了基于硅光电池的光照度测量系统.系统采用硅光电池接收光信号并转换成微弱的电流信号,经I/V转换和放大后以电压信号传送至MCU进行A/D转换,再根据数字信号和硅光电池的线性灵敏度计算出实际光照度值.为能动态调整放大电路的增益,系统采用了数字电位器作为反馈元件.利用该系统测量了面曝光快速成形工艺中视图平面上的光照度,对测量数据用MATLAB进行3次曲线拟合,建立了光照度与灰度的模型关系,利用该关系,可方便地通过改变灰度来调整视图平面上的光照度.
面曝光快速成形 光照度测量 硅光电池 灰度 mask projection stereolithography illumination measurement silicon photocell gray 
光电技术应用
2010, 25(3): 53

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!