肖常涛 1宋寅 1,2,*赵维谦 1,2,**
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 北京理工大学复杂环境智能感测技术工业和信息化部重点实验室,北京 100081
超快二维电子光谱技术在过去二十余年间得到了迅速的发展,并在研究光合作用、光伏材料与低维材料等的激发态布居动力学与相干动力学过程中发挥了重要作用。本综述将首先介绍二维电子光谱在拓展探测窗口与维度方面的技术发展。然后,讨论领域内现存的挑战与未来发展方向:在技术层面,如何降低二维电子光谱的技术门槛以及发展多光谱数据分析程序,是拓展二维电子光谱应用的重要瓶颈问题;在基础研究层面,如何发展新型的二维电子光谱技术,去更好地探测与解析相干调控动力学与极化基元动力学过程,是该领域的另一个关键难题。
超快光谱 激发态动力学 二维电子光谱 非线性光学 ultrafast spectroscopy excited-state dynamics two-dimensional electronic spectroscopy nonlinear optics 
激光与光电子学进展
2024, 61(1): 0130002
Author Affiliations
Abstract
1 New Materials and New Energies, Shen Zhen Technology University, Shenzhen 518118, China
2 Analysis and Testing Center, Shen Zhen Technology University, Shenzhen 518118, China
Two-dimensional transition metal dichalcogenides (TMDs) have intriguing physic properties and offer an exciting platform to explore many features that are important for future devices. In this work, we synthesized monolayer WS2 as an example to study the optical response with hydrostatic pressure. The Raman results show a continuous tuning of the lattice vibrations that is induced by hydrostatic pressure. We further demonstrate an efficient pressure-induced change of the band structure and carrier dynamics via transient absorption measurements. We found that two time constants can be attributed to the capture process of two kinds of defect states, with the pressure increasing from 0.55 GPa to 2.91 GPa, both of capture processes were accelerated, and there is an inflection point within the pressure range of 1.56 GPa to 1.89 GPa. Our findings provide valuable information for the design of future optoelectronic devices.
two-dimensional transition metal dichalcogenides hydrostatic pressure carrier dynamics band structure ultrafast spectroscopy 
Journal of Semiconductors
2023, 44(8): 082001
作者单位
摘要
深圳大学电子与信息工程学院射频异质异构集成全国重点实验室,广东 深圳 518060
金属纳米颗粒除了用作光学谐振腔,也是一类声学谐振腔,具有非常优异的声学振动性能。本文对金属声学谐振腔的相干声学振动及应用进行了概述。首先,介绍了金属纳腔相干声学振动的超快光学激发机制,并讨论了瞬态吸收光学显微镜对单个纳腔声学振动的探测;其次,阐述了几种简单金属声学纳腔(包括纳米球、纳米棒、纳米片)的振动模式、振动频率以及它们与纳腔尺寸、形状之间的关系;然后,重点讨论了金属纳腔间的声学振动强耦合现象,从多种纳腔耦合体系的实验出发,并从理论上分析了其中的耦合模式和耦合物理机制;接下来,对高频声学纳腔的应用进行了举例分析,详细讨论了高频声学振动在纳米流体学方面的应用;最后,对高频声学纳腔的未来发展趋势与应用前景进行了展望。
超快光谱学 金属纳腔 相干声学振动 声子学器件 强耦合 ultrafast spectroscopy metallic nanoresonators coherent acoustic vibration phononic device strong coupling 
光学学报
2023, 43(16): 1623015
作者单位
摘要
1 上海理工大学 光电信息与计算机工程学院 上海市现代光学系统重点实验室,上海 200093
2 马德里理工大学 工业能源工程系,西班牙马德里 28006
3 马德里理工大学 核聚变研究所,西班牙马德里 28006
由强场中红外飞秒脉冲泵浦的氮离子能够以自由感应衰变(FID)的形式发出相干的前向辐射,该FID辐射可以被随后的800 nm飞秒脉冲有效抑制。这种擦除效应是对微弱FID辐射进行时间表征的独特工具,特别是在FID辐射与泵浦脉冲的谐波在频域重叠的情况下。基于密度矩阵与麦克斯韦方程的数值模拟结果,认为擦除效应主要是由于800 nm脉冲直接引发氮离子B态和A态相干性的变化,该变化进一步与800 nm脉冲耦合作用,引起了B态和X态之间相干性的减小,从而导致对应的391.4 辐射的减弱。
空气激光 超快光谱技术 自由感应衰变 飞秒脉冲 Air lasing Ultrafast spectroscopy Free induction decay Femtosecond pulses 
光子学报
2023, 52(4): 0414001
作者单位
摘要
1 中国科学院合肥物质科学研究院固体物理研究所材料物理重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
二维 PtSe2 具备宽可调带隙、高稳定性等优点, 在新型光电器件方面具有极大应用价值。利用时间分辨太赫兹光谱研究了不同厚度 PtSe2 中的光生载流子超快动力学, 发现该材料瞬态太赫兹光电导的幅度及其激发光强度依赖性随材料厚度的增加呈现出显著的非线性增加趋势。通过太赫兹光电导频谱分析, 获得了光生载流子浓度、散射时间、背散射因子等动力学参数, 并结合激发波长依赖的太赫兹弛豫动力学, 推测束缚激子和自由载流子的竞争是引起这种厚度非线性关系的主要原因。此外, 基于光泵浦- 光探测光谱证明了 PtSe2 中的激子效应及半导体-半金属转变。该工作演示了层数对 PtSe2 中非平衡态动力学的有效调控, 对贵金属基二维材料在光电器件方面的应用具有指导意义。
超快光谱学 光生载流子动力学 太赫兹 二硒化铂 ultrafast spectroscopy photocarrier dynamics terahertz PtSe2 
量子电子学报
2023, 40(2): 282
Author Affiliations
Abstract
1 Department of Physics, California Institute of Technology, Pasadena, USA
2 Department of Electrical and Computer Engineering, Rice University, Houston, USA
3 Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, USA
4 Department of Physics and Astronomy, Rice University, Houston, USA
5 Department of Materials Science and NanoEngineering, Rice University, Houston, USA
Recent interest in developing fast spintronic devices and laser-controllable magnetic solids has sparked tremendous experimental and theoretical efforts to understand and manipulate ultrafast dynamics in materials. Studies of spin dynamics in the terahertz (THz) frequency range are particularly important for elucidating microscopic pathways toward novel device functionalities. Here, we review THz phenomena related to spin dynamics in rare-earth orthoferrites, a class of materials promising for antiferromagnetic spintronics. We expand this topic into a description of four key elements. (1) We start by describing THz spectroscopy of spin excitations for probing magnetic phase transitions in thermal equilibrium. While acoustic magnons are useful indicators of spin reorientation transitions, electromagnons that arise from dynamic magnetoelectric couplings serve as a signature of inversion-symmetry-breaking phases at low temperatures. (2) We then review the strong laser driving scenario, where the system is excited far from equilibrium and thereby subject to modifications to the free-energy landscape. Microscopic pathways for ultrafast laser manipulation of magnetic order are discussed. (3) Furthermore, we review a variety of protocols to manipulate coherent THz magnons in time and space, which are useful capabilities for antiferromagnetic spintronic applications. (4) Finally, new insights into the connection between dynamic magnetic coupling in condensed matter and the Dicke superradiant phase transition in quantum optics are provided. By presenting a review on an array of THz spin phenomena occurring in a single class of materials, we hope to trigger interdisciplinary efforts that actively seek connections between subfields of spintronics, which will facilitate the invention of new protocols of active spin control and quantum phase engineering.
terahertz spin dynamics magnetism orthoferrite ultrafast spectroscopy magneto-optics 
Photonics Insights
2023, 1(2): R05
Author Affiliations
Abstract
1 Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
2 Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia (IIT), Via Giovanni Pascoli, 70/3, 20133 Milan, Italy
3 Istituto di Fotonica e Nanotecnologie IFN – CNR, Via alla Cascata, 56/C, 3812 Povo – Trento, Italy
Photonic crystals can integrate plasmonic materials such as Indium Tin Oxide (ITO) in their structure. Exploiting ITO plasmonic properties, it is possible to tune the photonic band gap of the photonic crystal upon the application of an external stimuli. In this work, we have fabricated a one-dimensional multilayer photonic crystal alternating ITO and Titanium Dioxide (TiO2) via radio frequency sputtering and we have triggered its optical response with ultrafast pump-probe spectroscopy. Upon photoexcitation, we observe a change in the refractive index of ITO. Such an effect has been used to create a photonic crystal that changes its photonic bandgap in an ultrafast time scale. All optical modulation in the visible region, that can be tuned by designing the photonic crystal, has been demonstrated.Photonic crystals can integrate plasmonic materials such as Indium Tin Oxide (ITO) in their structure. Exploiting ITO plasmonic properties, it is possible to tune the photonic band gap of the photonic crystal upon the application of an external stimuli. In this work, we have fabricated a one-dimensional multilayer photonic crystal alternating ITO and Titanium Dioxide (TiO2) via radio frequency sputtering and we have triggered its optical response with ultrafast pump-probe spectroscopy. Upon photoexcitation, we observe a change in the refractive index of ITO. Such an effect has been used to create a photonic crystal that changes its photonic bandgap in an ultrafast time scale. All optical modulation in the visible region, that can be tuned by designing the photonic crystal, has been demonstrated.
Indium tin oxide Ultrafast spectroscopy Photonic crystal 
Journal of the European Optical Society-Rapid Publications
2022, 18(2): 2022009
作者单位
摘要
东南大学 生物科学与医学工程学院 生物电子学国家重点实验室,南京 210096
通过飞秒激光泵浦探测,在多层二硫化钼与生物水凝胶复合界面上,实现了GHz超高频声波的全光产生与时间分辨探测。进一步,采用频谱分析与理论解析手段,获取了生物水凝胶的声速和杨氏模量等力学参数。研究结果为生物表界面力学参数提供了一种全光无损测量方法,可为基于二维半导体的新型光声换能器构建、生物表界面力学参数的成像和超高时空分辨探测技术发展提供理论和实验参考。
飞秒激光 生物表界面 超快光谱 相干声学声子 声速 Femtosecond laser Bio-surface/interface Ultrafast spectroscopy Coherent acoustic phonon Acoustic velocity 
光子学报
2022, 51(10): 1032001
作者单位
摘要
1 上海理工大学 太赫兹技术创新研究院,上海市现代光学系统重点实验室,光学仪器与系统教育部工程中心,太赫兹光谱与影像技术协同创新中心,上海 200093
2 上海大学 理学院 物理系,上海 200444
太赫兹科学技术在光谱、成像、传感、生物医药、安全检测等方面展现出了巨大的应用潜力和价值。基于新材料和新机理,研发高效、超宽带和低成本的太赫兹光子学器件是太赫兹科学技术的重要挑战。近年来的研究表明,太赫兹光子学和超快自旋电子学深度交叉,获得了很大的关注。本文对超快太赫兹自旋光电子学所研究的物理机理和器件设计应用进行讨论。在物理机理研究方面,阐明了太赫兹脉冲为研究超快自旋电子学提供强大工具,实现了太赫兹驱动自旋波,探测自旋输运和超快磁测量。在器件设计与应用方面,介绍了基于自旋的新型太赫兹光子学器件,包括自旋太赫兹辐射源的优化方法,自旋太赫兹调制器的工作原理,自旋太赫兹探测器的设计方案。超快太赫兹自旋光电子学不仅有助于人们理解宏观自旋电子学现象背后的微观物理机制,而且有望实现高效的太赫兹光子学器件和光谱学应用。
太赫兹 自旋电子学 超快光谱 太赫兹产生和调控 Terahertz Spintronics Ultrafast spectroscopy Terahertz generation and modulation 
光子学报
2022, 51(7): 0751410
Tingyuan Jia 1,2,3Shaoming Xie 1,2Zeyu Zhang 1,2,3,4,*Qinxue Yin 1,3[ ... ]Yuxin Leng 1,2,3,5,***
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
4 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
5 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Bilayer graphene, which is highly promising for electronic and optoelectronic applications because of its strong coupling of the Dirac–Fermions, has been studied extensively for the emergent correlated phenomena with magic-angle manipulation. Due to the low energy linear type band gap dispersion relationship, graphene has drawn an amount of optoelectronic devices applications in the terahertz region. However, the strong interlayer interactions modulated electron-electron and electron-phonon coupling, and their dynamics in bilayer graphene have been rarely studied by terahertz spectroscopy. In this study, the interlayer interaction influence on the electron-electron and the electron-phonon coupling has been assigned with the interaction between the two graphene layers. In the ultrafast cooling process in bilayer graphene, the interlayer interaction could boost the electron-phonon coupling process and oppositely reduce the electron-electron coupling process, which led to the less efficient thermalization process. Furthermore, the electron-electron coupling process is shown to be related with the electron momentum scattering time, which increased vividly in bilayer graphene. Our work could provide new insights into the ultrafast dynamics in bilayer graphene, which is of crucial importance for designing multi-layer graphene-based optoelectronic devices.
terahertz ultrafast spectroscopy bilayer graphene 
Chinese Optics Letters
2022, 20(9): 093701

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!