Author Affiliations
Abstract
The basic indexes of all-optical integrated photonic circuits include high-density integration, ultrafast response and ultra-low energy consumption. Traditional methods mainly adopt conventional micro/nano-structures. The overall size of the circuit is large, usually reaches hundreds of microns. Besides, it is difficult to balance the ultrafast response and ultra-low energy consumption problem, and the crosstalk between two traditional devices is difficult to overcome. Here, we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density, ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate. The feature size of the whole circuit is only 2.5 μm × 7 μm, and that of a single device is 2 μm × 2 μm. The distance between two adjacent devices is as small as 1.5 μm, within wavelength magnitude scale. Theoretical response time of the circuit is 150 fs, and the threshold energy is within 10 fJ/bit. We have also considered the crosstalk problem. The circuit also realizes a function of identifying two-digit logic signal results. Our work provides a new idea for the design of ultrafast, ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.The basic indexes of all-optical integrated photonic circuits include high-density integration, ultrafast response and ultra-low energy consumption. Traditional methods mainly adopt conventional micro/nano-structures. The overall size of the circuit is large, usually reaches hundreds of microns. Besides, it is difficult to balance the ultrafast response and ultra-low energy consumption problem, and the crosstalk between two traditional devices is difficult to overcome. Here, we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density, ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate. The feature size of the whole circuit is only 2.5 μm × 7 μm, and that of a single device is 2 μm × 2 μm. The distance between two adjacent devices is as small as 1.5 μm, within wavelength magnitude scale. Theoretical response time of the circuit is 150 fs, and the threshold energy is within 10 fJ/bit. We have also considered the crosstalk problem. The circuit also realizes a function of identifying two-digit logic signal results. Our work provides a new idea for the design of ultrafast, ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.
all-optical integrated photonic circuit inverse design all-optical switch all-optical XOR logic gate 
Opto-Electronic Advances
2022, 5(10): 210061
作者单位
摘要
1 北京邮电大学信息光子学与光通信国家重点实验室,北京 100876
2 国网信息通信产业集团安徽继远软件有限公司,安徽 合肥 230088
3 国网湖北省电力有限公司信息通信公司,湖北 武汉 430000
为提高光通信系统的物理层安全性能,设计并实现了一种基于双驱马赫-曾德尔调制器的加密调制一体化方案,该方案利用双驱马赫-曾德尔调制器中的矢量调制机制对明文和密钥在光域中进行异或加密操作,同时实现了加密和调制的功能复用。阐述了所提方案的基本工作原理和提升加密信号消光比的优化过程,并基于所提方案成功研制了加密调制一体化发射样机。实验结果表明,所提方案可以对传输速度为32 Gb/s的信号实现调制和加密,且信号消光比高达13.2 dB。仿真结果表明,在不同传输距离下,所提方案的接收信号消光比相比普通通断键控(OOK)系统有明显的提升。
光通信 信息安全传输 加密调制一体化 双驱马赫-曾德尔调制器 异或逻辑门加密 高消光比 
光学学报
2022, 42(14): 1406001
作者单位
摘要
1 兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070
2 甘肃省科学院 传感技术研究所, 甘肃 兰州 730070
分析了二维光子晶体马赫-曾德尔干涉仪的传输特性, 将二维光子晶体波导、环形腔和马赫-曾德尔干涉仪有效结合,提出了一种基于二维光子晶体马赫-曾德尔干涉仪的异或门设计。用平面波展开法分析二维光子晶体能带结构, 并用时域有限差分法验证光信号在该器件中的电场稳态分布。结果表明, 该结构能够实现异或逻辑, 且具有高逻辑对比度7.88 dB, 快速响应周期0.388 ps和高传输速率7.87 Tbit/s; 并且该器件结构尺寸仅为13 μm×14 μm, 易于集成。该异或逻辑结构中引入了二维光子晶体马赫-曾德尔干涉仪, 使得光子晶体逻辑门结构的设计更加多样, 并为二维光子晶体半加器与全加器的设计提供了基础, 具有重要的研究意义。
硅基光学 异或逻辑门 平面波展开法 时域有限差分法 silicon-based optical XOR logic gate plane wave expansion method finite-difference time-domain method 
发光学报
2018, 39(12): 1772

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!