作者单位
摘要
重庆邮电大学 光电工程学院/国际半导体学院, 重庆 400065
在降压转换器中, 为了在不同的负载情况下获得高效率, 常采用的方法是在重载时使用脉冲宽度调制(PWM), 在轻载时使用脉冲频率调制(PFM), 因此需要模式切换信号去控制整个降压转换器的工作状态, 同时模式切换信号也可以用于自适应改变功率级电路中的功率管栅宽, 减小功率管的栅极电容, 提高整体电路的效率。文章设计了一个自适应峰值电流模式切换电路, 用于产生模式切换信号, 其原理是监控峰值电流的变化, 产生峰值电压, 将峰值电压与参考电压进行比较, 得到模式切换信号, 以决定降压转换器是采用PFM模式还是PWM模式。仿真结果表明, 在负载电流05~500 mA范围内, 该电路可以在两种调制模式之间平稳切换, 其峰值效率可提升到94%以上。
降压转换器 模式切换 脉冲宽度调制 脉冲频率调制 自适应峰值电流 buck converter mode switching pulse width modulation pulse frequency modulation adaptive peak current 
微电子学
2023, 53(4): 647
作者单位
摘要
1 电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
2 电子科技大学 重庆微电子产业技术研究院, 重庆 401331
提出了一种自适应时间常数匹配Gm-C电感电流采样方法。该方法通过比较Buck变换器SW点电压的过零时间与Gm-C滤波采样电压的过零时间,判断Gm-C时间常数是否与DCR时间常数匹配。使用鉴频鉴相器检测二者过零时间差,并控制双向计数器,实现对电容阵列等效容值的调制,最终实现自适应时间常数匹配Gm-C电感电流采样。与前序工作相比,该校准过程平滑,并且可以在DC-DC变换器正常工作情况下进行在线调制,能有效适应DC-DC变换器工作中温度、电压、电流等外部条件的变化。
自适应时间常数匹配 Gm-C电感电流采样 Buck变换器 adaptive time constant matching Gm-C inductor current sensing buck converter 
微电子学
2022, 52(5): 810
作者单位
摘要
1 电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
2 电子科技大学 广东电子信息工程研究院, 广东 东莞 523808
提出了一种应用于48 V-1 V系统的隔离型混合模式降压变换器,利用飞电容和变压器实现高转换比应用下的高转换效率。混合变换器结合了开关电容变换器和开关电感变换器,其中飞电容承担了部分电压降,实现了功率开关管电压应力的降低。由于开关节点处的电压摆幅较小,开关损耗随之减小;通过使用更低压的功率开关管,实现功率开关管导通损耗减小。在此基础上,隔离型混合模式降压变换器通过时序控制可以实现软开关,进而实现功率开关管开关损耗减小,使得整体效率提升。在隔离型混合模式降压变换器中,飞电容还具有隔直电容的作用,可以防止变压器偏磁。在典型应用下,即在48 V输入电压、1 V输出电压、500 kHz开关频率下,峰值效率为94.84%。
降压变换器 飞电容 高转换比 软开关 效率提升 buck converter flying capacitor high conversion ratio soft-switching efficiency improvement 
微电子学
2022, 52(5): 803
作者单位
摘要
1 电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
2 电子科技大学 广东电子信息工程研究院, 广东 东莞 523808
提出了一种基于开关电流积分器的RB-COT Buck变换器。通过注入电感电流纹波补偿控制环路,引入采样保持电路消除电感电流纹波的直流分量,提高了输出电压的精度。在此基础上,开关电流积分器替代原架构中的固定RC滤波器,有效提升了高工作频率下系统的响应速度,并在全频率范围内兼顾稳定性与响应速度。以全频率范围内环路稳定性作为设计基本准则,该Buck变换器在高开关频率下响应速度得到了有效提升。在1 MHz开关频率下,负载阶跃的恢复时间相比于采用固定RC滤波减少了20 μs。
开关电流积分器 基于纹波的恒定导通时间控制方式 Buck变换器 switched current integrator RB-COT buck converter 
微电子学
2022, 52(5): 797
作者单位
摘要
宁波大学 信息科学与工程学院, 浙江 宁波 315211
随着5G、人工智能及物联网等技术的蓬勃发展和半导体工艺尺寸的不断缩小,终端设备处理器和服务器的数据处理能力及其他性能快速提升,这对电源管理芯片提出了新的需求。而多相并联结构变换器在低压大电流应用、快速瞬态响应等方面具有极大的优势,被公认为处理器电源的最佳解决方案之一。文章从多相Buck变换器的原理及优势出发,研究和探讨了多相Buck变换器设计中的多相电流均衡方法、控制模式及效率提升等关键技术的发展和最新的研究进展,进而明确多相Buck变换器的关键发展趋势和面临的挑战。
多相Buck变换器 电流均衡 控制模式 高效率 multi-phase buck converter current balance control mode high efficiency 
微电子学
2022, 52(5): 711
作者单位
摘要
西南交通大学 微电子研究所, 成都 611756
GaN半桥输出点电压在死区时间为负值, 给GaN功率器件栅极驱动电路信号通信带来了挑战。通过研究驱动器电平移位锁存电路工作状态与半桥功率级输出节点电压跳变、死区时间负压之间的相互影响, 设计了一种新型的零静态功耗电平移位电路及其误触发消除电路。电路采用100 V BCD 0.18 μm工艺设计, 在输入电压100 V、开关频率5 MHz的GaN半桥变换器中对版图进行了后仿真。仿真结果表明, 当半桥功率级输出节点分别为-3 V和100 V时, 延时为4.5 ns和1.5 ns。
GaN驱动 电平移位电路 开关电源 DC-DC降压变换器 GaN driving level shifter switching power DC-DC buck converter 
微电子学
2021, 51(1): 28
作者单位
摘要
电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 6100054
提出了一种采用单周期输出电压预测(SCOVP)技术的自适应导通时间(AOT)控制Buck变换器。该变换器可以在输入输出电压及负载变化时实现频率恒定, 并可设置外部电阻使Buck变换器准确工作在高开关频率下。首先分析了传统AOT控制Buck变换器的开关频率产生漂移的原因, 并提出了一种采用SCOVP技术的单脉冲计时器(OST)电路。其次通过单周期占空比预测输出电压信息, 并根据预测的输出电压和负载电流补偿TON时间, 实现了Buck的频率稳定。该变换器采用0.18 μm BCD工艺进行电路设计。仿真结果表明, 在2 MHz开关频率下, 负载电流从1 A到5 A变化时, Buck变换器的最大频率变化ΔfSW仅13 kHz, 负载平均频率变化ΔfSW/ΔILoad为3.24 kHz/A。同时, 变换器频率设置准确度从88%提升到99.35%。
AOT控制 Buck变换器 单周期输出电压预测技术 adaptive constant on time control buck converter single cycle output voltage prediction 
微电子学
2021, 51(1): 22
作者单位
摘要
电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
提出了一种数字恒定导通时间(COT)控制的DC-DC Buck变换器。通过跨导放大器、流控振荡器(CCO)和数字滤波器对电感电流进行采样, 形成电流内环。在基于ADC、PI补偿器的电压外环输出信号上叠加由误差电流、CCO产生的斜坡补偿信号, 最终形成双环控制的Buck变换器电路。提出的数字谷值电流模COT控制方法采用数字电流内环和额外的斜坡补偿方式, 加快了电路的瞬态响应, 同时保持了数字电源高输出精度的特性。该Buck变换器在输入电压5 V、输出电压3.3 V、开关频率1 MHz下进行了仿真验证。仿真结果表明, 负载上阶跃和下阶跃响应时间分别为11 μs和17 μs。
数字COT控制 电流采样 斜坡补偿 Buck变换器 digital COT control current sampling slope compensation buck converter 
微电子学
2021, 51(5): 690
作者单位
摘要
合肥工业大学 微电子设计研究所 教育部IC设计网上合作研发中心, 合肥 230601
介绍了一种用于断续导通模式Buck变换器的效率提升电路。详细分析了影响转换效率的关键因素, 在此基础上提出了一种高效率的整流管驱动控制方案。该方案具备自适应死区时间和电感电流过零检测的功能, 在兼顾系统功耗的前提下大幅优化了体二极管导通损耗和反向电感电流损耗, 实现效率最大化。在018 μm BCD工艺下完成了设计和仿真, 仿真结果表明, 输入 3 V、输出15 V条件下, 峰值效率高达966%, 负载大于5 mA时转换效率高于90%。
Buck变换器 断续导通模式 体二极管导通损耗 整流管驱动控制 buck converter discontinuous conduction mode body-diode conduction loss rectifier-driven control 
微电子学
2021, 51(6): 883
作者单位
摘要
电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
提出了一种采用自适应斜坡补偿(ARC)的恒定导通时间控制Buck变换器。引入了两个斜坡电压, 实现对电感电流下降斜率的检测; 通过负反馈环路调节斜坡斜率, 使斜坡斜率跟随电感电流下降斜率的变化。最终斜坡补偿带来的额外极点被固定下来, 以便于补偿设计。在此基础上, 引入瞬态增强电路, 提高了负载阶跃响应速度。在5 V输出电压下, 负载从3 A到100 mA阶跃时, 输出上冲电压减小了150 mV, 恢复时间缩短了10 μs。负载从100 mA到3 A阶跃时, 输出下冲电压减小了130 mV, 恢复时间缩短了12 μs。
自适应斜坡补偿 电流模 恒定导通时间 Buck变换器 adaptive slope compensation current mode COT buck converter 
微电子学
2021, 51(6): 866

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!