作者单位
摘要
上海理工大学 光电信息与计算机工程学院, 上海 200093
针对大气湍流环境下光学元件平面面形PV值测量这一问题。首先建立了一种大气湍流下斐索干涉仪的模型,通过该模型得到1000张干涉条纹图像; 然后提出了一种基于卷积神经网络估算PV值的方法,将干涉条纹图像作为卷积神经网络的输入,利用卷积神经网络提取图像的特征信息,得到PV值; 最后将得到的结果与ASTM计算得到的结果、相位解包裹得到的结果以及BP神经网络得到的结果进行对比,发现利用卷积神经网络的方法偏差为2.25×10-4λ,较ASTM、相位解包裹以及BP神经网络得到的结果偏差更小。实验结果表明此方法具有抗干扰性强、精度高、运算快的优点,是一种有效的抗大气湍流影响的光学检测方法。
大气湍流 平面面形测量 卷积神经网络 斐索干涉仪 atmospheric turbulence plane measurement convolutional neural network Fizeau interferomete 
光学技术
2023, 49(6): 704
任姣姣 1,2,3,*焦铁鑫 1,2,3顾健 1,2,3陈奇 3[ ... ]张霁旸 3
作者单位
摘要
1 长春理工大学光电测控与光信息传输技术教育部重点实验室,吉林 长春 130022
2 长春理工大学光电工程学院,吉林 长春 130022
3 长春理工大学中山研究院,广东 中山 528400
利用太赫兹时域光谱技术对不同煤灰分含量的光谱进行分析,发现在0.5~3 THz频段内,随着煤灰分含量的增加,其折射率会逐步提高,吸收效应也会逐步增强;考虑到煤样品厚度对光谱的影响,提出一种基于厚度校正的吸收系数特征提取方法,提高了低灰分煤样品吸收曲线的数据区分度;利用双通道卷积神经网络提取折射率和吸收系数特征,建立了煤灰分预测模型。实验结果显示,训练集的拟合度为R2=98.21%,预测精度ERMS=0.1442,而预测集的R2=93.56%,ERMS=0.2037,均优于传统PLSR、BP和LSSVM等方法。可见,所提方法在解决选煤厂煤灰分检测问题上具有较好的表现,为选煤厂提供了一种新的技术路径。
光谱学 太赫兹时域光谱技术 煤灰分 折射率 吸收系数 卷积神经网络 预测 spectroscopy terahertz time-domain spectroscopy coal ash refractive index absorption coefficient convolutional neural network prediction 
光学学报
2023, 43(22): 2230001
作者单位
摘要
天津大学微电子学院,天津 300072
为了解决高光谱图像超分辨率重建中物质本征光谱表达能力不足、图像尺度变化过程中存在细节信息损失的问题,提出一种全局-局部注意力特征重用网络。首先,通过多节点特征重用增强网络的多尺度信息提取能力。其次,引入局部注意力,利用空间注意力机制聚焦重点空间信息,并通过通道注意力机制增强特异性光谱提取能力。最后,设计全局修正模块,根据原始多光谱图像空间信息丰富与高光谱图像光谱保真度高的特性进一步补偿处理过程中损失的空间与光谱维度信息,提高网络可靠性。选取CAVE和Harvard数据集进行训练与测试,并与多种先进方法进行定量与定性评估。结果表明,所提网络能够重建出更高分辨率的高光谱图像,更好完成高光谱超分辨率任务。
高光谱图像 超分辨率 注意力机制 特征重用 卷积神经网络 hyperspectral images super-resolution attention mechanism feature reuse convolutional neural network 
光学学报
2023, 43(21): 2115001
作者单位
摘要
华东交通大学机智能机电装备创新研究院,江西 南昌 330013
基于互相关算法的双波长共相检测方法在大量程共相误差检测中,存在检测速度慢、精度低的问题。针对该问题,利用卷积神经网络的方法建立拼接镜的平移(piston)误差预测模型,以实现双波长共相检测方法在大量程共相误差下的快速、准确检测。首先,将两波长下的圆孔衍射图像拼接作为卷积神经网络的训练数据。训练结束后,将包含piston误差信息的圆孔衍射拼接图像输入到训练好的模型中,可直接检测出piston误差值。仿真结果表明:基于卷积神经网络的共相方法具有高的检测精度、快的检测速度及较好的抗噪性和泛化能力。该方法为平移误差的测量提供了一种可行且易于实现的方案。
测量 卷积神经网络 piston误差 拼接镜 圆孔衍射 measurement convolutional neural network piston error segmented mirror circular diffraction 
中国激光
2023, 50(22): 2204001
作者单位
摘要
天津大学微电子学院,天津 300072
肾肿瘤危害极大,严重影响人类身体健康,对肾肿瘤进行早期检测和诊断有助于患者的治疗与康复。为高效地从腹部电子计算机断层扫描(CT)图像中分割出肾脏及肾肿瘤图像,提出一种基于三维U2型网络(U2-Net)的分割方法。首先,将二维U2-Net升维并调整网络深度、损失函数与深度监督策略;其次,为了增强解码端的特征表达能力,提出残差特征强化模块,对解码端特征图进行通道与空间域的强化;最后,为提高网络对全局信息的提取能力,提出基于全局特征的多头自注意力模块,计算特征图所有体素点间的长期依赖关系,获取丰富的三维医学图像上下文信息。所提方法在KiTS19官方数据集上的实验结果表明,平均Dice值为0.9008,参数量为4.60 MB,与现有方法相比,所提方法能够在参数量较小的前提下,取得较好的分割精度,对小内存嵌入式肾脏和肾肿瘤图像分割系统具有很高的应用价值。
医学图像分割 卷积神经网络 残差特征强化 多头自注意力 medical image segmentation convolutional neural network residual feature enhancement multi-head self-attention 
激光与光电子学进展
2023, 60(22): 2210010
作者单位
摘要
长春理工大学 计算机科学技术学院, 吉林 长春 130022
光学成像分辨率受衍射极限、探测器尺寸等诸多因素限制。为了获得细节更丰富、纹理更清晰的超分辨率图像,本文提出了一种多尺度特征注意力融合残差网络。首先,使用一层卷积提取图像的浅层特征,之后,通过级联的多尺度特征提取单元提取多尺度特征,多尺度特征提取单元中引入通道注意力模块自适应地校正特征通道的权重,以提高对高频信息的关注度。将网络中的浅层特征和每个多尺度特征提取单元的输出作为全局特征融合重建的层次特征。最后,利用残差分支引入浅层特征和多级图像特征,重建出高分辨率图像。算法使用Charbonnier损失函数使训练更加稳定,收敛速度更快。在国际基准数据集上的对比实验表明:该模型的客观指标优于大多数最先进的方法。尤其在Set5数据集上,4倍重建结果的PSNR指标提升了0.39 dB,SSIM指标提升至0.8992,且算法主观视觉效果更好。
卷积神经网络 超分辨率重建 多尺度特征提取 残差学习 通道注意力机制 convolutional neural network super-resolution reconstruction multi-scale feature extraction residual learning channel attention mechanism 
中国光学
2023, 16(5): 1034
张勇 1,2郭杰龙 2,*汪帆 1,2兰海 2[ ... ]魏宪 2
作者单位
摘要
1 福州大学 电气工程与自动化学院,福建 福州 350108
2 中国科学院 福建物质结构研究所,福建 福州 350108
雨天图像会影响计算机视觉任务的效果与精度。雨天图像常常包含来自不同方向、大小、形状的雨点或雨痕,在对这些雨点、雨痕进行去除时,现有的方法往往没有考虑到雨天图像不同精细尺度下的特征信息,仅采用单一尺度进行图像去雨存在很大缺陷,无法恢复出足够清晰的视觉任务图像。受益于卷积神经网络架构的强大特征提取能力,本文提出了一种端到端的多级联递进卷积结构算子,该算子包含4层卷积层,通过阶梯化连接构成一个整体模块,该模块可以针对多尺度场景下的雨天进行特征提取并整合。将该算子模块嵌入到渐进循环网络结构中,利用循环结构多次去除雨纹,最终有效还原出接近真实图像的无雨图像。该方法在现有的人工合成雨图数据集Rain100H、Rain100L、Rain800与自动驾驶领域合成雨图数据集BDD1000上进行了对比实验。实验结果表明,该算法在4个数据集上的PSNR值达到了30.70,37.91,27.63,35.74 dB,SSIM值达到了0.914,0.980,0.894,0.977。通过真实雨图数据集去雨结果的可视化展示,充分验证了本文方法在去雨任务上的有效性。
图像去雨 多级联递进卷积结构 卷积神经网络 深度学习 多尺度特征 残差结构 image rain removal multi-cascade progressive convolution structure convolutional neural network deep learning multi-scale feature residual structure 
液晶与显示
2023, 38(10): 1409
作者单位
摘要
杭州电子科技大学理学院,浙江 杭州 310018
为解决高分辨率遥感图像所具有的类内差异大而类间差异小的特性导致的图像难分类问题,提出一种基于深度学习中卷积神经网络与Transformer优点的混合结构。对卷积层提取的特征信息使用两个带有空间位置信息的注意力机制,分别沿水平方向和垂直方向对每个通道进行特征聚集,以减少遥感场景特征的冗余映射,使网络能够提取更多与任务目标相关的信息。然后利用Transformer编码器结构对捕获的特征图进行编码操作,赋予特征图中感兴趣区域较大的权重。实验结果表明,与现有的基于深度学习的遥感图像分类方法相比,所提方法既降低了模型参数量,又提升了分类准确率,在遥感图像分类数据集AID、NWPU-RESISC45及VGoogle上均达到了最高的平均分类准确率,分别为98.95%、96.00%和95.01%。
图像分类 卷积神经网络 Transformer 空间位置信息 注意力机制 image classification convolutional neural network Transformer spatial location information attention mechanism 
激光与光电子学进展
2023, 60(20): 2028006
作者单位
摘要
浙江农林大学光机电工程学院,浙江 杭州 311300
随着深度学习和结构光条纹投影三维成像技术的发展,直接从单幅条纹图中恢复物体的三维形状的研究近年来受到了多个领域的关注。提出改进的全局引导路径网络MultiResHNet,实现对单幅条纹图的3D形状重建,将现有结构光学三维成像方案与深度卷积神经网络结合,对仿真数据和实验数据分别进行了验证。实验结果表明,所提方法预测的3D形状比已有的U-Net神经网络预测的3D形状更加准确,误差更小,精度更高。实验结果证明了所提技术的有效性和鲁棒性,为后续的3D形状重建技术的提高提供了科学依据,具有一定的参考和应用价值。
条纹图 结构光 卷积神经网络 3D形状 机器视觉 fringe pattern structured light convolutional neural network 3D shape machine vision 
激光与光电子学进展
2023, 60(20): 2015006
作者单位
摘要
1 聊城大学物理科学与信息工程学院山东省光通信科学与技术重点实验室,山东 聊城 252059
2 聊城大学计算机学院,山东 聊城 252059
目前中华传统刺绣工艺传承保护问题中的修复任务主要以人工为主,修复过程需要大量的人力、物力。随着深度学习的高速发展,不同类型的刺绣文物损伤可以利用生成对抗网络进行修复。针对上述问题,提出一种基于改进深度卷积生成对抗网络(DCGAN)的刺绣图像修复方法。首先,在生成器部分引入空洞卷积层扩大感受野,并添加卷积注意力机制模块,在通道与空间2个维度增强重要特征的指导作用;在判别器部分增加全连接层数提升网络解决非线性问题的能力;在损失函数部分联合均方误差损失与对抗损失通过网络训练相互博弈的过程实现刺绣图像修复。实验结果表明:引入空洞卷积层与注意力机制提升了网络性能与修复效果,最终得到修复图像的结构相似性高达0.955,能够得到较为自然的刺绣图像修复效果,可以为专家提供纹理、色彩等信息作为参考辅助后续的修复。
非遗文化保护 刺绣图像修复 生成对抗网络 卷积神经网络 空洞卷积 注意力机制 intangible cultural heritage protection embroidery image inpainting generative adversarial network convolutional neural network dilated convolution attention mechanism 
激光与光电子学进展
2023, 60(20): 2010005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!