
Author Affiliations
Abstract
1 Centre for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200433, China
2 Zhangjiang Laboratory, Shanghai 201210, China
The heterogeneous integration of photonic integrated circuits (PICs) with a diverse range of optoelectronic materials has emerged as a transformative approach, propelling photonic chips toward larger scales, superior performance, and advanced integration levels. Notably, two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP), and hexagonal boron nitride (hBN), exhibit remarkable device performance and integration capabilities, offering promising potential for large-scale implementation in PICs. In this paper, we first present a comprehensive review of recent progress, systematically categorizing the integration of photonic circuits with 2D materials based on their types while also emphasizing their unique advantages. Then, we discuss the integration approaches of 2D materials with PICs. We also summarize the technical challenges in the heterogeneous integration of 2D materials in photonics and envision their immense potential for future applications in PICs.
two-dimensional materials silicon photonics heterogeneous integration photonic integrated circuits Chinese Optics Letters
2023, 21(11): 110007
1 西安理工大学 自动化与信息工程学院, 西安 710048
2 西安工业大学 电子信息工程学院, 西安 710021
为了提高可见光通信系统性能, 将可见光通信技术与其它通信技术异构融合, 能使各类技术取长补短, 增强通信系统容量, 提高资源利用率。介绍了可见光通信分别与电力线通信(PLC)、WiFi、以太网、长期演进(LTE)网络、第五代/第六代移动通信技术(5G/6G)融合的方法及发展现状, 对可见光通信异构融合系统的未来发展做了展望。
可见光通信 异构融合 以太网 visible light communication heterogeneous integration ethernet
1 中电科技集团重庆声光电有限公司, 重庆 400060
2 模拟集成电路国家级重点实验室, 重庆 400060
3 中国电子科技集团公司 第二十四研究所, 重庆 400060
我们所处的物理世界是模拟的。在现代信息与通信技术(ICT)、计算系统中,模拟电子的作用包括物理世界感应与交互、计算、控制、数据转换、通信、供电和测量等环节。以模拟集成电路为主体的模拟微电子器件是当今几乎所有以数字为中心的系统中的关键组件,对未来信息技术的发展至关重要。为了实现以5G、6G通信为代表的新一代ICT、工业40、物联网等信息社会的基础设施建设目标,其首要和必要条件是通过模拟硬件取得根本性突破,实现物理世界与机器交互的智能感知、认知和处理。为此要求模拟电子器件技术在无线信号链集成电路、计算范式与架构、高精度感知控制,以及模拟微电子技术的设计、工艺和封装测试技术、特定应用等方面开展研究,解决诸如计算范式与架构创新、压缩感知、新架构创新所需的工艺技术、毫米波和太赫兹等高频段集成电路开发所带来的各种挑战。文章从无线信号链集成电路、边缘机器学习中的模拟技术、高精度感知与控制、重要工艺创新等方面探讨了模拟微电子及应用技术前沿的最近研究进展,显示了未来模拟电子技术的关键发展趋势。
模拟微电子 毫米波和太赫兹集成电路 边缘计算 神经形态 智能传感器 异构集成 analog microelectronics millimeter wave and terahertz integrated circuit edge computing neuromorphology smart sensor heterogeneous integration
光电信息控制和安全技术重点实验室, 天津 300308
新型材料、先进集成封装技术和新型微架构的不断涌现, 促使光电领域装备向轻量化、智能化、一体化方向发展。微系统所带来的性能和功耗改进, 使装备的全面/跨代升级成为可能, 具有重要的**应用前景。文中关注微系统在光电领域的应用, 梳理现阶段各研究机构在半导体及光频微系统领域的规划部署, 并对光频微系统的**应用前景进行展望。
光频微系统 微集成技术 异质异构集成 光学相控阵 optical frequency micro-system micro-integration technology heterogeneous integration optical phased array
光学学报
2020, 40(14): 1405002
微波光子学利用光子技术实现微波信号的产生、传输、处理及控制, 可突破传统微波技术在带宽、传输损耗和抗电磁干扰等方面的瓶颈, 提升雷达、电子战等信息系统的综合性能。激光器、电光调制器和光电探测器是微波光子技术中的三种核心光电子器件, 其性能对微波光子链路的噪声和动态等指标具有决定性的影响, 但基于分立器件的微波光子系统体积、重量较大, 难以满足雷达、电子战等系统的阵列化需求, 硅基异质集成技术以及高密度低损耗片上光传输互连技术是解决有源器件集成和无源器件集成的关键技术。文章介绍了用于微波光子的硅基激光器、电光调制器、光电探测器和波导的异质集成技术的发展现状, 并探讨了集成微波光子技术的发展趋势。
微波光子学 异质集成 激光器 电光调制器 光电探测器 波导 microwave photonics heterogeneous integration laser electrooptic modulator photodetector waveguide