作者单位
摘要
1 长春中科长光时空光电技术有限公司,吉林 长春 130102
2 中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室,吉林 长春 130033
首次报道了连续输出功率>1 W、脉冲输出功率>10 W的1550 nm波长垂直腔面发射半导体激光器(VCSEL)阵列。对1550 nm VCSEL激光器单个发光单元的热阻特性进行了分析,建立了基于热阻分析及可变产热量的VCSEL阵列热模型,优化了VCSEL发光单元间距,在理论上保证了阵列内部具有均匀的温度分布。制备了发光单元边缘间距为30 μm的高密度集成1550 nm波长VCSEL阵列,并对其在连续工作及脉冲电源驱动条件下的输出特性进行了测试分析。当VCSEL阵列的工作温度为15 ℃时,最高连续输出功率达到1.05 W;即使工作温度增加至65 ℃,VCSEL的最高连续输出功率仍能达到0.42 W。在脉宽为5 μs、重复频率为1 kHz的脉冲条件下,VCSEL在15 ℃时的最大峰值功率达到10.5 W,此时VCSEL呈现出热饱和现象。当脉冲功率为10.5 W时,阵列远场的光斑仍然呈圆形对称形貌,两个正交方向上的远场发散角分别为26.69°和26.98°。
激光器 1550 nm 垂直腔面发射激光器阵列 高功率 人眼安全 激光雷达 lasers 1550 nm vertical-cavity-surface-emitting laser array high power eye safe lidar 
中国激光
2023, 50(19): 1901008
肖虎 1,2李瑞显 1,2吴函烁 1,2黄良金 1,2[ ... ]陈金宝 1,2,***
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
级联泵浦方案具有泵浦光亮度高、量子亏损小、光纤热负荷低、模式不稳定阈值高等优势,是获得高功率光纤激光的主要技术方案。目前,万瓦级高光束质量光纤激光的实现在非线性效应抑制和模式控制等方面遇到困难。本文介绍了国防科技大学近年来在高光束质量级联泵浦光纤激光器方面的研究进展,并对功率和光束质量进一步提升的可行途径进行了分析。
高功率光纤激光器 级联泵浦 受激拉曼散射 光束质量 high-power fiber lasers tandem pump stimulated Raman scattering beam quality 
光学学报
2023, 43(17): 1714009
杨保来 1,2,3王鹏 1,2,3奚小明 1,2,3马鹏飞 1,2,3[ ... ]王泽锋 1,2,3,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 高能激光技术湖南省重点实验室,湖南 长沙 410073
综述了近年来公开报道的LD泵浦光纤激光器的研究进展及典型结果,分为光纤激光振荡器、光纤激光放大器和“振荡+放大一体化”激光器3个部分进行介绍。在光纤激光振荡器部分,介绍了空间结构光纤振荡器和全光纤结构光纤振荡器的发展及典型结果;在光纤放大器部分,重点对大于5 kW功率的典型光纤放大器进行介绍;最后,对改进的“振荡+放大一体化”激光器的典型结果及技术优势进行介绍。
掺镱光纤 高功率 光纤激光振荡器 光纤激光放大器 ytterbium-doped fiber high power fiber laser oscillator fiber laser amplifier 
光学学报
2023, 43(17): 1714005
吴金明 1李凤昌 1王鹏 1,2,3张汉伟 1,2,3,***[ ... ]陈金宝 1,2,3,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
简要回顾了高功率掺镱光纤激光器的发展历程,指出宽温运行光纤激光器的需求与应用场景。综述已有关于光纤激光器在变温条件下的研究成果,在高功率光纤激光器的发展中,工作温度对光纤激光器造成的影响将进一步显现。介绍了利用现有光纤器件以及传统光纤激光器设计的宽温运行光纤激光器案例。通过系统设计和结构优化,本课题组已成功实现千瓦级的宽温运行光纤激光器,整机运行温度从常温拓展到-30 ℃。进一步的功率提升和温度范围拓展还需要对光纤激光器工作机理、光纤器件温度特性等方面进行深入研究。此外,展望了宽温运行光纤激光器的发展趋势,研究结果为高功率宽温运行光纤激光器的发展提供了参考。
激光光学 光纤放大器 振荡器 宽温 高功率 laser optics fiber amplifier oscillator wide temperature high power 
光学学报
2023, 43(17): 1714003
孟祥明 1杨保来 1,2,3,*奚小明 1,2,3王鹏 1,2,3[ ... ]王小林 1,2,3,**
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
基于后向泵浦结构搭建了1050 nm光纤激光放大器,将20/400 μm的双包层大模场掺镱光纤作为增益光纤,采用976 nm稳波长半导体激光器作为泵浦源。通过优化增益光纤长度,对短波长光纤放大器中的放大自发辐射效应进行抑制。采取优化种子时序稳定性的方法提升受激拉曼散射效应的阈值,实现了最高3.5 kW的功率输出。在最高输出功率下:输出激光在X方向和Y方向的光束质量因子分别约为1.33和1.25,此时的3 dB带宽为4.07 nm,光光转换效率为86.3%;时域信号稳定,没有出现模式不稳定现象。
激光器 光纤放大器 放大自发辐射 受激拉曼散射 高功率 近单模 lasers fiber amplifier amplified spontaneous emission stimulated Raman scattering high power nearly single mode 
光学学报
2023, 43(17): 1714001
江丽 1,2,3宋锐 1,2,3,*侯静 1,2,3,**陈胜平 1,2,3[ ... ]韩凯 1,2
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
高功率可见光至近红外波段的超连续谱光源在光电对抗、光学相干层析成像和高光谱激光雷达等方面具有广泛的应用前景。最近几年,涌现了一些用于产生高功率超连续谱光源的新方法,推动了高功率超连续谱光源的进一步发展。本文从主振荡功率放大结构、随机光纤激光器结构以及多路非相干合成这三种用于高功率超连续谱产生的主流方案出发,着重介绍了近年来有代表性的高功率可见光至近红外波段超连续谱光源的研究进展,并综合分析了这三种方案的优缺点以及未来的发展潜力。
非线性光学 高功率光纤超连续谱 渐变折射率多模光纤 光子晶体光纤 随机光纤激光器 多路非相干合成 nonlinear optics high-power fiber supercontinuum graded-index multimode fiber photonic crystal fiber random fiber laser multichannel incoherent combination 
光学学报
2023, 43(17): 1719001
周子超 1,2崔文达 1,3,4奚小明 1,3韩凯 1,3,*[ ... ]许晓军 1,3,4
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学信息通信学院,湖北 武汉 430034
3 国防科技大学南湖之光实验室,湖南 长沙 410073
4 高能激光技术湖南省重点实验室,湖南 长沙 410073
高功率光纤激光器中的热效应是影响激光器稳定运行的重要因素。为了增加高功率光纤激光器的稳定性,对高功率光纤激光器的纤芯温度进行测量至关重要。本文首先介绍了利用光纤光栅与光频域反射技术测量增益光纤纤芯温度的方法,分析了不同光纤激光器与放大器纤芯温度分布的测量结果。而后介绍了纤芯温度分布式在线测量方法在高功率光纤激光器热效应与非线性效应调控等方面的应用,为高功率光纤激光器性能提升研究提供了参考。
高功率光纤激光器 纤芯温度测量 光纤传感 光频域反射技术 high-power fiber laser temperature measurement of fiber core fiber sensing OFDR 
光学学报
2023, 43(17): 1714006
Author Affiliations
Abstract
1 California State University Channel Islands, Camarillo, California, USA
2 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
3 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
4 Ludwig–Maximilians–Universität München, Garching, Germany
5 BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
6 Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan, USA
7 Ergodic LLC, San Francisco, California, USA
8 Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
9 Queen’s University Belfast, Belfast, UK
The next generation of high-power lasers enables repetition of experiments at orders of magnitude higher frequency than what was possible using the prior generation. Facilities requiring human intervention between laser repetitions need to adapt in order to keep pace with the new laser technology. A distributed networked control system can enable laboratory-wide automation and feedback control loops. These higher-repetition-rate experiments will create enormous quantities of data. A consistent approach to managing data can increase data accessibility, reduce repetitive data-software development and mitigate poorly organized metadata. An opportunity arises to share knowledge of improvements to control and data infrastructure currently being undertaken. We compare platforms and approaches to state-of-the-art control systems and data management at high-power laser facilities, and we illustrate these topics with case studies from our community.
big data community organization control systems data management feedback loops high-power lasers high repetition rate metadata stabilization standards 
High Power Laser Science and Engineering
2023, 11(5): 05000e56
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 脉冲功率激光技术国家重点实验室,湖南 长沙 410073
包层光滤除器(CPS)能将光纤中包层光滤除,保证大功率光纤激光系统的高光束质量和稳定性,是大功率光纤激光系统稳定运行的重要核心器件之一。本文基于分段腐蚀法,设计了一种新的可实现双向滤除的弱-强-弱CPS制备方案。在无主动制冷、激光输入功率为2051 W的情况下,分别测试了正反向输入时的CPS性能,CPS局部最高温度为31.2 ℃,温升速率为3.5 ℃/kW,滤除效率为20.1 dB。对CPS进行双向设计,可以将光纤包层中的回返光均匀滤除,进一步提升光纤激光器系统的安全性与可靠性。该研究可为大功率光纤激光系统提供重要的器件支撑。
激光器 光纤激光器 包层光滤除器 分段腐蚀 大功率 lasers fiber laser cladding power stripper fractional etching high power 
激光与光电子学进展
2023, 60(17): 1714003
作者单位
摘要
国防科技大学 前沿交叉学科学院,湖南 长沙 410073
高功率光纤激光是激光技术领域的热点,我国近年来取得了高速发展和突出成就。文中以学科方向的视角,分四个阶段梳理我国该学科方向的发展历程,从科学研究、教育教学、学术交流、行业应用等方面介绍该学科方向的现状,通过深入对比分析归纳进一步发展面临的挑战,并提出对策建议。
高功率 光纤激光 学科 high power fiber laser discipline 
红外与激光工程
2023, 52(7): 20230071

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!